研究生: |
石大維 |
---|---|
論文名稱: |
以多目標與限制最佳化觀點求解競賽旅程問題 Solving the Traveling Tournament Problem by Constrained Multiobjective Optimization |
指導教授: | 蔣宗哲 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 競賽旅程問題 、變動鄰域 、模擬退火法 、限制處理機制 、多目標最佳化 |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運動時間表問題 (Sport Timetabling Problem) 一直以來都是一個相當困難的問題,其影響的因素五花八門,像是運動員的需求、場館間的距離、商業和廣告的考量等等。其中針對球隊旅行產生了競賽旅程問題 (Traveling Tournament Problem),本論文針對這樣的問題做研究。該問題原本為一個單目標最佳化問題,本論文將此問題發展為多目標最佳化問題,藉由此方式讓使用者能夠有多元的選擇,例如選擇一個總距離並非最短,但是能讓所有的隊伍移動距離較為平均的解。
本論文提出群體式多鄰域模擬退火法 (Population-based Multi Neighborhood Simulated Annealing, PMNSA) ,其中使用變動鄰域搜尋法 (Variable Neighborhood Search) 與隨機選擇鄰域函式做比較,希望能找到一種效能較好的做法,接著使用模擬退火法 (Simulated Annealing) 以及群體式的 (population-based) 概念去搜尋,另外也改良過去競賽旅程問題所使用的鄰域函式,並比較其改良前後搜尋解空間的能力,藉由此方式提高搜尋的效能。在限制處理機制的部分採用原先單目標常用的懲罰函數 (penalty function) 以及ϵ-constraint做比較,並找到一個最適合此多目標最佳化問題的限制處理機制。最後本論文列出目前找到的多目標最佳解,以供之後做比較。
[1] K. Easton, G. Nemhauser, and M.A. Trick. (2001) The traveling tournament problem: description and benchmarks. T.Walsh (Ed.), Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, 2239, 580–584.
[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. (2002, April) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182 – 197.
[3] E. Zitzler, M. Laumanns, and L. Thiele. (2001) SPEA2-Imprving the strength pareto evolutionary algorithm. Computer Engineering and Networks Laboratory (TIK), Report 103.
[4] Q. Zhang, and H. Li. (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transations on Evolutionary Computation, 11 (6), 712 – 731.
[5] A. Anagnostopoulos, L. Michel†, P.V. Hentenryck, and Y. Vergados. (2006) A simulated annealing approach to the traveling tournament problem. Journal of Scheduling, 9 (2), 177 – 193.
[6] G. Langford. (2010) An improved neighbourhood for the traveling tournament problem. Arxiv preprint arXiv:1007.0501.
[7] A. Lim, B. Rodrigues, and X. Zhang. (2006) A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research, 174 (3), 1459 – 1478.
[8] P.V. Hentenryck, Y. Vergados. (2007) Population-based simulated annealing for traveling tournaments. Proceedings of the 22nd national conference on Artificial intelligence, 267 – 272.
[9] L.D. Gaspero, and A. Schaerf. (2007) A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics, 13 (2), 189 – 207.
[10] P.C. Chen, G. Kendall, and G.V. Berghe. (2007) An ant based hyper-heuristic for the travelling tournament problem. 2007. SCIS '07. IEEE Symposium on Computational Intelligence in Scheduling, 1 (5), 19 – 26.
[11] C.C. Ribeiro, and S. Urrutia. (2007) Heuristics for the mirrored traveling tournament problem. European Journal of Operational Research, 179 (3), 775 – 787.
[12] W. Wei, S. Fujimura, X. Wei, and C. Ding. (2010) A hybrid local search approach in solving the mirrored traveling tournament problem. IEEE 17Th International Conference on In Industrial Engineering and Engineering Management (IE&EM), 620 – 624.
[13] N.S. Choubey. (2010) A novel encoding scheme for traveling tournament problem using genetic algorithm. IJCA Special Issue on Evolutionary Computation, 2, 79 – 82.
[14] F.L. Biajoli, and L.A.N. Lorena. (2006) Mirrored traveling tournament problem: an evolutionary approach. Lecture Notes in Computer Science, 4140, 208 – 217.
[15] M.A.M. de Carvalho, and L.A.N. Lorena. (2012) New models for the mirrored traveling tournament problem. Computers & Industrial Engineering, 63 (4), 1089 – 1095.
[16] Challenge traveling tournament instances. http://mat.gsia.cmu.edu/TOURN/
[17] D.C. Uthus, P.J. Riddle, and H.W. Guesgen. (2012) Solving the traveling tournament problem with iterative-deepening A∗. Journal of Scheduling,15 (5) ,601 – 614.