研究生: |
吳郁娟 |
---|---|
論文名稱: |
全球暖化影響之下日降水與極端降水事件變化之探討 |
指導教授: | 陳正達 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 極端降水 、全球暖化 |
英文關鍵詞: | GEV, GPD, extreme precipitation, extreme events |
論文種類: | 學術論文 |
相關次數: | 點閱:336 下載:75 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Weather and climate events can have serious and damaging effects on human society (such as flood, heavy precipitation, heat wave, etc.). In this study, the simulation of the variability and extremes of daily rainfall for the present and the future climate is investigated. This is done by the ECHAM4/OPYC3 GSDIO for the period 1960-1990 and the Special Report on Emission Scenarios (SRES) A2 (rapid CO2 increase) and B2 (moderate CO2 increase) forcing scenario for the period of 2070-2100. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1996-2004) is considered. In general, analysis of model data revealed agreement with observations. For the future, the ECHAM4/OPYC3 simulates the variability of the daily rainfall predicts the most pronounced precipitation changes are found in high latitudes of the Northern Hemisphere for the winter. However for some continental areas, the change of mean precipitation and rainfall intensity is not coincident. A clear reduction in the probability of wet day, in particular, for the large areas in the northern mid-latitudes and subtropics. Despite this decrease the relative contribution of heavy precipitation has grown due to the corresponding increase of the scale parameter of the gamma distribution. This implies a more extreme climate with higher probabilities of droughts and heavy precipitation events. Furthermore, the variability of the 99.7th percentile also implies in the area of heavy precipitation, stronger heavy rainfall will happen in the future, vice versa. Extreme value theory based on GEV and GPD provides a much more complete analysis of the statistical distribution of extreme rainfall event. We have obtained statistically significant spatial models of the three parameters of GEV and GPD. N-years return level form GEV or GPD all show the relative changes in extreme precipitation is larger than change in total precipitation.
Balkema, A. A., and L. de Haan, 1974: Residual lifetime at great age. Ann. Probab., 2, 792–804.
Begueria S., and S. M. Vincent-Serrano, 2006: Mapping the Hazard of Extreme Rainfall by Peaks over Threshold Extreme Value Analysis and Spatial Regression Techniques. J. of Applied Meteorology and Climatology, 45, 108–124.
Brown, B. G.., and R. W. Katz, 1995: Regional analysis of temperature extremes: Spatial analog for climate change?. J. of Clim., 8, 108-119
Changnon, S. A., R. A. Pielker Jr., D. Changnon, R. T. Stlvers, and R. Pulwarty, 2000: Human Factors Explain the Increased Losses from Weather and Climate Extremes. Bull. Amer. Meteor. Soc., 81, 437-442.
Chou C., and J. D. Neelin, 2004: Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. J. of Clim., 17, 2688-2701.
_____, J. D. Neelin, J.-Y. Tu, and C.-T. Chen, 2006: Tropical regional precipitation change mechanisms in ECHAM4/OPYC3 under global warming. J. of Clim., in press.
Coles S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer Verlag, 225 pp.
Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed Variability and Trends in Extreme Climate Events: A Brief Review. Bull. Amer. Meteor. Soc., 81, 417-425.
Ekstrom M., H. J. Fowler, C. G. Kilsby, and P. D. Jones, 2005: New Estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies. J. Hydrology, 300, 234-251.
Fisher, R. A., and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Cambridge Phil. Soc., 24, 180-190.
Fowler, H. J., M. Ekstrom, C. G. Kilsby, and P.D. Jones, 2005: New Estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. J. Hydrology, 300, 212-233.
Gilleland E., and R. W. Kaze, 2005: Tutorial for The Extremes Toolkit: Weather and Climate Applications of Extreme Value Statistics. http://www.assessment.ucar.edu/toolkit.
_____, and _____, 2006: Analyzing seasonal to interannual extreme weather and climate variability with extremes toolkit. 86th American Meteorological Society (AMS) Annual Meeting, 29 January - 2 February, Atlanta, Georgia. P2.15.
Gordon, H. B., P. H. Whetton, A. B. Pittock, A. M. Fowler, and M. R. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: Implications for extreme rainfall events. Clim. Dyn., 8, 83-102.
Groisman, P. Y., T. R. Karl, D. R. Easterling, R.W. Knight, P. F. Jamason, K. J. Hennessey, R. Suppiah, C. M. Page, J. Wibig, K. Fortuniak, V. N. Razuvaev, A. Douglas, E. Forland, and P-M Zhai, 1999: Changes in the probability of heavy precipitation: important indicators using linear combinations of order statistics. J. R. Statist Soc., B52, 105-124.
Hanssen-Bauer I., and E.J. Førland, 2000: Temperature and precipitation variations in Norway 1900-1994 and their links to atmospheric circulation. Int. J. Climatol., 20, 1693-1708.
Hemmessy, K. J., J.M. Gregory, and J. F. B. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Clim. Dyn., 13, 667-680.
Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc., Ser. B, 52, 105-124.
Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.
Jagger T., J. B. Elsner, and N. Xufeng, 2001: A dynamic model of hurricane winds in coastal counties of the United States. J. Appl. Meteor., 40, 853-863.
Kharin, V. V., and F. W. Zwier, 2000: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J. of Clim., 13, 3760-3788.
_____, and _____, 2005: Estimating extremes in transient climate change simulations. J. of Clim., 18, 1156-1173.
Kiktev D., D. M. H. Sexton, L. Alexander, and C. K. Folland, 2003: Comparison fo Modeled and Observed Trends in Indices of Daily Climate Extremes. J. of Clim., 16, 3560-3571.
Maindonald J., and J. Braun, 2003: Data Analysis and Graphics Using R – an Example – based Approach. Cambridge University Press, 362 pp.
May W., 2004: Simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for present and future times in a global time-slice experiment. Clim. Dyn., 22, 183-204.
Meehl, Gerald A., T. Karl, D. R. Easterling, S. Changnon, R. Pielke Jr., D. Changnon, J. Evans, P. Ya. Groisman, T. R. Knutson, K. E. Kunkel, L. O. Mearns, C. Parmesan, R. Prlwarty, T. Root, R. T. Sylvers, P. Whetton, and F. Zwiers, 2000: An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts, and Model Projections. Bull. Amer. Meteor. Soc., 81, 413-416.
_____, F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton, 2000: Trends in Extreme Wheather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change. Bull. Amer. Meteor. Soc., 81, 427-436.
Parmesan C., T. L. Root, and M. R. Willig, 2000: Impacts of Extreme Weather and Climate on Terrestrial Biota. Bull. Amer. Meteor. Soc., 81, 443-450.
Pickands J., 1975: Statistical inference using extreme order statistics. Ann. Stat., 3, 119–131.
R Development Core Team, 2004: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org.
Roeckner E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Duemenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report of the Max-Planck-Institute, Hamburg, 218, 90 pp.
Semenov, V. A., L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Clim. Dyn., 19, 123-140.
Watterson, I. G., and M. R. Dix, 2003: Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J. Geophys. Res., 108(D13), 4379.
Wehner, M. F.,2004: Predicted Twenty-First-Century Changes in Seasonal Extreme Precipitation Events in the Parallel Climate Model. J. of Clim., 17, 4281-4290.
Wetstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic-Arctic Oscillation on mean, variance and extremes of temperature in the northeastern United States and Canada. J. of Clim., 15, 3586-3600.
Wilks, D. S., 1990: Maximum likelihood estimation for the gamma distribution using data contain zeros. J. of Clim., 3, 1495-1501.
_____, 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
Zwiers F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J. of Clim., 11, 2200-2222.
王保進,2002:視窗版SPSS與行為科學研究。心理出版社,第二版,頁501-513。
張健邦,2000:統計學。三民書局,初版,頁55-58。
林宗慶,2005:極值損失模型之交叉驗證。逢甲大學統計與精算研究所碩士論文。