簡易檢索 / 詳目顯示

研究生: 劉珊佑
Liu, Shan-Yu
論文名稱: 以「乾冰與肥皂」為例探討科學演示與觀眾反應的關係
Using Dry Ice and Soap Water as a Case to Investigate the Relationship between Science Demonstration and Audience Responses
指導教授: 張俊彥
Chang, Chun-Yen
口試委員: 張俊彥
Chang, Chun-Yen
劉德祥
Lau, Tak-Cheung
鄧宗聖
Deng, Tzong-Sheng
陳秋民
Chen, Chiou-Min
朱慶琪
Chu, Ching-Chi
口試日期: 2024/07/19
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 110
中文關鍵詞: 科學演示觀眾反應科學教育科學傳播
英文關鍵詞: science demonstration, audience responses, science education, communication
研究方法: 調查研究半結構式訪談法影片分析法
DOI URL: http://doi.org/10.6345/NTNU202401407
論文種類: 學術論文
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討科學演示之呈現方式、道具使用等活動特徵,和參與觀眾所產生的情感或認知反應的關係,以國立臺灣科學教育館(以下簡稱科教館)中研究者所研發的科學演示「乾冰與肥皂」為例,並參考科學傳播之「大眾對於科學的反應」為框架,探討觀眾反應與科學演示活動特徵的關係。本研究以腳本分析及影像紀錄的方式,分析科學演示中活動特徵實踐的情形,並收集約139份觀眾問卷、隨機訪談約13位觀眾,以了解觀眾對於科學演示的各項反應,以及對於其反應與演示呈現方式、道具使用之關係。發現實際執行科學演示時,演示者主要使用專業實驗用品或日常實驗素材與觀眾互動,觀眾反應最喜歡「演示者操作科學內容」呈現科學內容,而「自己上台參與」、「演示者講解科學內容」等呈現方式,分別與觀眾的興趣、理解反應最有關係。本研究之成果可做為往後科學演示內容調整及研發精進的參考方向,突顯科學演示之教育性、娛樂性及互動性等內涵。

    This study investigated the relationship between the features of science demonstrations—such as presentation methods and the use of objects—and the emotional or cognitive responses of participating audiences. Using the "Dry Ice and Soap" science demonstration developed by the researchers at the National Taiwan Science Education Center (NTSEC) as a case study, and referencing the framework of "public response to science" from science communication, this research explored the relationship between audience responses and the features of science demonstrations. The study analyzed the demonstration script and video recording to present the implementation of features in the science demonstration. Additionally, we collected 139 audience questionnaires and conducted random interviews with 13 audience members to understand their various responses to the science demonstration, as well as the relationship between these responses and the presentation methods and use of objects. The findings revealed that during the actual execution of the science demonstrations, the demonstrator primarily used professional experimental equipment or daily experimental materials to interact with the audience. The audience's enjoyment response is to the "demonstrator's operation of scientific experiment," which presents scientific content. Presentation methods such as "audience participation on stage" and "demonstrator's explanation of scientific content" are the most related to the audience's interest and understanding responses. The results of this study serve as a reference for future improvements and implications in the content and development of science demonstrations, highlighting the educational, entertaining, and interactive aspects of science demonstrations.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的及問題 4 第四節 名詞釋義 5 第二章 文獻回顧 6 第一節 科學演示 6 2.1.1 科學演示的演進 6 2.1.2 科學演示的實踐 7 2.1.3 科學演示之主題 9 第二節 科學演示的活動特徵 13 2.2.1 科學演示的場域特徵 13 2.2.2 科學演示的人物特徵 15 2.2.3 科學演示的呈現方式與道具使用 17 第三節 科學傳播 19 2.3.1 科學傳播與科學演示 19 2.3.2 科學傳播之大眾反應 20 第四節 科學教育活動及成效評估 23 2.4.1 科學中心之教育活動 23 2.4.2 科學中心教育活動之成效評估 24 2.4.3 科學中心之觀眾研究 25 第五節 科學演示的設計及成效 26 2.5.1 科學演示之觀眾研究 26 2.5.2 科學演示活動特徵與觀眾反應之關係 28 第三章 研究方法 31 第一節 研究對象 31 第二節 研究工具 32 第三節 研究程序 35 第四節 研究範圍及限制 37 第四章 研究結果與分析 39 第一節 科學演示腳本及錄影分析 39 4.1.1 科學演示乾冰與肥皂之腳本及錄影流程分析 39 4.1.2 科學演示乾冰與肥皂之活動特徵 40 4.1.3 科學演示乾冰與肥皂之腳本及錄影流程分析 45 4.1.4 科學演示乾冰與肥皂之呈現方式及物品使用組合 52 第二節 觀眾對於科學演示之反應 53 4.2.1 觀眾背景 53 4.2.2 觀眾自評對於科學演示之反應 56 4.2.3 觀眾對於科學演示之興趣及理解 60 第三節 觀眾反應與科學演示活動特徵之關係 63 4.3.1 科學演示活動特徵與觀眾的享受反應(E)的關係 65 4.3.2 科學演示活動特徵與觀眾的興趣反應(I)的關係 66 4.3.3 科學演示活動特徵與觀眾的理解反應(U)的關係 68 第四節 綜合討論 69 第五章 結論及建議 74 第一節 研究結論 74 第二節 研究建議 77 參考文獻 80 附錄一:研究者回顧科學演示之文獻探討列表 87 附錄二:科學演示活動特徵編碼表 89 附錄三:乾冰與肥皂科學演示回饋問卷 91 附錄四:科學演示半結構訪談 94 附錄五:科學演示「乾冰與肥皂」腳本 97 附錄六:半結構訪談紀錄 102

    王如哲 (2010)。解析「學生學習成效」。評鑑雙月刊,27,62。https://doi.org/10.6445/EB.201009.0062
    方金祥、張志聰、謝耀隆 (2009)。一氧化碳與二氧化碳之簡易安全氣體製備裝置設計與在化學教學演示上之應用研究。化學,67(4),421-428。 https://doi.org/10.6623/chem.2009042
    江淑琳、張瑜倩 (2016)。更民主的科學溝通:科學類博物館實踐公眾參與科學之角色初探。傳播研究與實踐,6(1),199-227。 https://doi.org/10.6123/JCRP.2016.008
    張美珍 (2000)。從認知心理學派觀點探析博物館內學習。科技博物,4(4), 30-47。
    張美珍 (2001)。談科學博物館教育政策的擬定。科技博物,5(2),33-45。https://doi.org/10.6432/TMR.200103.0033
    張慧貞 (2008)。演示實例之理解與誤解:以 [喝水鳥] 與 [愛情溫度計] 為例,Chinese Physics,9(1),1-16.
    張慧貞、陳宗慶 (2004)。演示教學引導探究學習: 以聖誕燈學電路為例。科學教育月刊,274。
    張譽騰 (1987)。博物館教育活動的理論與實際。文史哲出版社
    張譽騰 (1994)。博物館觀眾研究的目的、範疇與方法。人類與文化,(30),33-39。https://doi.org/10.6719/MC.199410_(30).0006
    陳惠美 (1990)。科學博物館的科學教育,博物館學季刊,4(3),31-38。https://doi.org/10.6686/MuseQ.199007_4(3).0007
    陳勁甫、林怡安 (2003)。博物館遊客滿意度與服務品質之研究:以國立自然科學博物館為例。博物館學季刊,17(3),113-131。
    曾瑞蓮、許馨月 (2018)。第八屆海峽兩岸科學傳播論壇紀實,Chinese Physics,19(2),59-62。
    黃旭 (2023)。論博物館使命。博物館學季刊,37(1),5-8。
    蔡秉宸、靳知勤 (2004)。藉情境學習提昇民眾科學素養:以科學博物館教育為例。博物館學季刊,18(2),129-138。
    蘇芳儀 (2013)。博物館科學演示活動學習成效個案分析: 以 [認識氣候變遷] 為例。科技博物,17(1),61-102。
    An, S. A., Zhang, M., Tillman, D. A., Robertson, W., Siemssen, A., & Paez, C. R. (2016). Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms. European Journal of Science and Mathematics Education, 4(3), 397-412.
    Austin, S. R., & Sullivan, M. (2019). How are we performing? Evidence for the value of science shows. International Journal of Science Education, Part B, 9(1), 1-12. https://doi.org/10.1080/21548455.2018.1532620
    Bar, V., Shirtz, A. S., Brosh, Y., & Sneider, C. (2019). Can an Insulator Be Electrified? Teaching Electricity in Elementary and Middle School in the Age of NGSS. Science Educator, 27(1), 24-32.
    Burns, T. W., O'Connor, D. J., & Stocklmayer, S. M. (2003). Science communication: a contemporary definition. Public Understanding of Science, 12(2), 183-202.
    Caleon, I., & Subramaniam, R. (2005). The impact of a cryogenics‐based enrichment programme on attitude towards science and the learning of science concepts. International Journal of Science Education, 27(6), 679-704. https://doi.org/10.1080/09500690500038306
    Chin, C. -C. (2004). Museum experience—A resource for science teacher education. International Journal of Science and Mathematics Education, 2(1), 63-90.
    Falk, J. H. (2001). Chapter1 Free-Choice Science Learning: Framing the Discussion. In J. H. Falk (Ed.), Free- Choice Science Education (pp. 3-20), New York, NY: Teacher College, Columbia University.
    Fish, D., Allie, S., Pelaez, N., & Anderson, T. (2017). A cross-cultural comparison of high school students’ responses to a science centre show on the physics of sound in South Africa. Public Understanding of Science, 26(7), 806-814. https://doi.org/10.1177/0963662516642725
    Hajas, D., Ablart, D., Schneider, O., & Obrist, M. (2020). I can feel it moving: Science Communicators Talking About the Potential of Mid-Air Haptics. Frontiers in Computer Science, 1-13. https://doi.org/10.3389/fcomp.2020.534974
    Harrison, T. G., & Shallcross, D. E. (2016). Chemistry Provision for Primary Pupils: The Experiences of 10 Years of Bristol ChemLabs Outreach. Universal Journal of Educational Research, 4(5), 1173-1179. https://doi.org/10.13189/ujer.2016.040530
    Held, L. (2017). Avogadro's Hypothesis after 200 Years. Universal Journal of Educational Research, 5(10), 1718-1722. https://doi.org/10.13189/ujer.2017.051007
    Hooper‐Greenhill, E. (2004). Measuring learning outcomes in museums, archives and libraries: The Learning Impact Research Project (LIRP). International Journal of Heritage Studies, 10(2), 151-174.
    Karademir, A., Kartal, A., & Türk, C. (2020). Science education activities in Turkey: A Qualitative comparison study in preschool classrooms. Early Childhood Education Journal, 48(3), 285-304.
    Karim, N, & Roslan, R. (2020). The Impact of Interactive Science Shows on Student’s Learning Achievement on Fire and Pressure Science Concept for 9th Grader in Brunei. Jurnal Pendidikan IPA Indonesia, 9(3), 294-308. https://doi.org/10.15294/jpii.v9i3.23684
    Kerby, H. W., Cantor, J., Weiland, M., Babiarz, C., & Kerby, A. W. (2010). Fusion science theater presents the amazing chemical circus: A new model of outreach that uses theater to engage children in learning. Journal of chemical education, 87(10), 1024-1030. https://doi.org/10.1021/ed100143j
    Kireš, Marián. (2018). Let's Repair the Broken Galileo Thermometer. Center for Educational Policy Studies Journal, 8(1), 77-95. https://doi.org/10.26529/cepsj.320
    Korkmaz, S. D., Aybek, E. C., & Pat, S. (2015). The Effect of New Experimental System Design Related to the Plasma State on Achievement of Candidate Elementary Science Teachers. Universal Journal of Educational Research, 3(10), 735-741. https://doi.org/10.13189/ujer.2015.031012
    Lujan, H. L., LaFrance, N. C., Petersen, S. A., & DiCarlo, S. E. (2020). Red State or Blue State Depends on the Ventilation Rate: A Respiratory Acid Base" Shock and Awe" Demonstration. HAPS Educator, 24(1), 70-73. https://doi.org/10.21692/haps.2020.001
    Mackin, K. J., Cook-Smith, N., Illari, L., Marshall, J., & Sadler, P. (2012). The effectiveness of rotating tank experiments in teaching undergraduate courses in atmospheres, oceans, and climate sciences. Journal of Geoscience Education, 60(1), 67-82. https://doi.org/10.5408/10-194.1
    Micklavzina, S., Almqvist, M., & Sörensen, S. L. (2014). Bringing physics, synchrotron light and probing neutrons to the public: a collaborative outreach. Physics Education, 49(2), 221. https://doi.org/10.1088/0031-9120/49/2/221
    Monacelli, B., & Silberman, D. (2006). Up to some optricks in Southern California. Optics and photonics news, 17(9), 16.
    Morgan, J. R., Barroso, L. R., & Simpson, N. (2009). Embedding Laboratory Experience in Lectures. Advances in Engineering Education, 1(4), n4.
    Naude, F. (2015). Foundation-phase children's causal reasoning in astronomy, biology, chemistry and physics. South African Journal of Childhood Education, 5(3), 1-9. http://dx.doi.org/10.4102/sajce.v5i3.376
    Odom, A. L., & Bell, C. V. (2015). Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning. International Journal of Environmental and Science Education, 10(1), 87-97.
    Penguin Brand Dry Ice (2024, April 15). Learning in the Classroom with Dry Ice. Airgas. https://penguindryice.com/learning-in-the-classroom-with-dry-ice/
    Peleg, R, & Baram-Tsabari, A. (2016). Understanding producers’ intentions and viewers’ learning outcomes in a science museum theater play on evolution. Research in Science Education, 46(5), 715-741. https://doi.org/10.1007/s11165-015-9477-7
    Petruševski, V. M., & Stojanovska, M. I., (2007). Oscillating Reactions: Two Analogies. Science Education Review, 6(2), 68-73.
    Petruševski, V. M., & Bukleski, M. (2006). The" Magical" Sphere: Uncovering the Secret. Science Education Review, 5(4), 114-118.
    Practical Chemistry Project (2024, April 15). Detergents, soaps and surface tension. Royal Society of Chemistry. https://edu.rsc.org/experiments/detergents-soaps-and-surface-tension/1719.article
    Robertson, W., & Lesser, L. M. (2013). Scientific Skateboarding and Mathematical Music: Edutainment That Actively Engages Middle School Students. European Journal of Science and Mathematics Education, 1(2), 60-68.
    Rukavina, S., Zuvic-Butorac, M., Ledic, J., Milotic, B., & Jurdana-Sepic, R. (2012). Developing positive attitude towards science and mathematics through motivational classroom experiences. Science education international, 23(1), 6-19.
    Sadler, W. (2017). Evaluating the long-term impact of live science demonstrations in an interactive science show. New Perspectives in Science Education, 129-132.
    Salmi, H., Thuneberg, H., & Vainikainen, M. P. (2017). Learning with dinosaurs: a study on motivation, cognitive reasoning, and making observations. International Journal of Science Education, Part B, 7(3), 203-218.
    Shepardson, D. P., Moje, E. B., & Kennard‐McClelland, A. M., (1994). The impact of a science demonstration on children's understandings of air pressure. Journal of Research in Science Teaching, 31(3), 243-258.
    Smeets, I. (2018). What do people like about mathematics? Adults Learning Mathematics: An International Journal of Environmental and Science Education, 13(1), 58-64.
    Snetinová, M., Kácovský, P., & Machalická, J. (2018). Hands-on experiments in the interactive physics laboratory: Students’ intrinsic motivation and understanding. CEPS Journal, 8(1), 55-75.
    Sunassee, S. N., Young, R. M., Sewry, J. D., Harrison, T. G., & Shallcross, D. E. (2012). Creating Climate Change Awareness in South African Schools through Practical Chemistry Demonstrations. Acta Didactica Napocensia, 5(4), 31-48.
    Ubuz, B., & Duatepe-Paksu, A. (2016). Teaching and Learning Geometry in Drama Based Instruction. European Journal of Science and Mathematics Education, 4(2), 176-185. https://doi.org/10.30935/scimath/9463
    Vinko, L., Delaney, S., & Devetak, I. (2020). Teachers’ opinions about the effect of chemistry demonstrations on students’ interest and chemistry knowledge. CEPS Journal, 10(2), 9-25. https://doi.org/10.26529/cepsj.893
    Watermeyer, R. (2013). The presentation of science in everyday life: the science Show. Cultural Studies of Science Education, 8(3), 737-751. https://doi.org/10.1007/s11422-013-9484-9
    Werts, S., & Hinnov, L. (2011). A Simple Modeling Tool and Exercises for Incoming Solar Radiation Demonstrations. Journal of Geoscience Education, 59(4), 219-228. https://doi.org/10.5408/1.3651449
    Yasuhiro, Y., Ishimura, M., & Kinugawa, T. (2020). A compact self-luminous LED stroboscope with wireless control for the real-time visualization of velocity vectors. Physics Education, 55(6), 065010.
    Zana, B. (2005). History of the museums, the mediators and scientific education. Journal of Science Communication, 4(4), C02.

    下載圖示
    QR CODE