簡易檢索 / 詳目顯示

研究生: 林辰穎
LIN, CHEN-YING
論文名稱: 鐵電氧化鉿鋯於立體結構之奈米製程
Nano-Manufacturing of Three Dimension Architecture with Ferroelectric HfZrO2
指導教授: 李敏鴻
Lee, Min-Hung
口試委員: 陳邦旭
Chen, Pang-Shiu
陳奕君
Cheng, I-Chun
唐英瓚
Tang, Ying-Tsang
李敏鴻
Lee, Min-Hung
口試日期: 2022/07/27
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 57
中文關鍵詞: 氧化鉿鋯三維鐵電記憶體鰭式電晶體
英文關鍵詞: HfZrO2, three-dimensional Ferroelectric memory, Fin-FET
研究方法: 實驗設計法內容分析法
DOI URL: http://doi.org/10.6345/NTNU202201211
論文種類: 學術論文
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨著技術節點的演進有助於人工智慧與物聯網的快速發展,電子元件須滿足低功耗、高密度、高效能等特性,目前已經能透過鰭式電晶體、環繞式閘極電晶體等多閘極三維電晶體,有效增加閘極控制通道的能力以至於降低漏電流並且解決尺寸微縮所導致的短通道效應,進而使續摩爾定律(Moore’s Law)延續。近年來鐵電材料於記憶體領域得到廣泛的研究,由於鉿基氧化物的鐵電材料具有與CMOS製程優異的相容性,相比傳統鈣鈦礦的鐵電材料成為新興記憶體的候選者之一。
    本論文研究分為三個部分,第一部份透過台灣半導體中心提供的i-line(365 nm)機台開發出鰭式電晶體,第二部分透過原子層沉積系統調變不同前驅物沉積順序,分別開發奈米貼合與超晶格之鐵電氧化鉿鋯堆疊製程,由於奈米貼合(Nano-laminated)與超晶格(Superlattice)的結構有助於鐵電氧化層的結晶,進階將它們應用於三維的鰭式場效電晶體。第三部分為開發三維垂直式陣列鐵電穿隧接面架構的製程。
    本論文成功演示分別將奈米貼合、超晶格與鐵電穿隧接面元件應用於三維的鰭式場效電晶體與三維垂直式陣列記憶體結構,並且超晶格的結果顯示在尺寸微縮下同時保持優異的鐵電記憶體特性,而三維垂直結構的鐵電穿隧接面元件透過調變電壓使電流比明顯上升。本論文之結果有助於未來發展3D NAND的架構。

    In order to meet the requirement of future technology nodes for artificial intelligence (AI) and the Internet of Things (IoT), the high performance, high-density and low power consumption are highly demanded. The non-planar FET, such as FinFET and GAAFET, has been proposed to improve the gate control capability for reducing leakage current and suppressing short channel effect with device scaling down under continuing the Moore's Law. Recently, hafnium oxide-based ferroelectric (FE) materials have been extensively investigated in the memory due to process compatibility with CMOS. It has the advantage as compare to traditional perovskite materials and as candidates for emerging memory applications.
    There are three parts in this thesis. One is i-line-based (365 nm) FinFET process by Taiwan Semiconductor Research Institute (TSRI). The second part is ferroelectric HfZrO2 (HZO) stacking combination with the nano-laminated (NL) or superlattice (SL) by atomic layer deposition (ALD) system. The ferroelectric characteristics would be improved with NL and SL structures, and applied to 3D FinFET. The third part is 3D vertical array ferroelectric tunnel junction (FTJ) memory architecture.
    The nano-laminated and superlattice for 3D FinFET, and 3D vertical FTJ array memory are successfully demonstrated. The superlattice HZO exhibits the superior memory characteristic with device scaling down. The current ratio of the 3D vertical FTJ structure increases significantly with increasing the applied voltage. Overall the conclusion of this thesis benefits for the 3D NAND memory architecture in the future.

    1 中文摘要 I 2 Abstract II 3 致謝 III 4 目錄 IV 5 圖目錄 VI 1 第一章 緒論 1 1-1 多閘極場效電晶體簡介 1 1-2 鐵電材料介紹 5 2 第二章 I-line Stepper非平面型電晶體製程 8 2-1 簡介 8 2-2 製程介紹 9 2-2-1 晶圓清洗 9 2-2-2 定義通道製程 10 2-2-3 Trimming 薄光阻和通道蝕刻製程 15 2-2-4 利用熱氧化製程 18 2-2-5 沉積High-K介電層 19 2-2-6 閘極製程 19 2-3 結果討論 23 3 第三章 奈米貼合(Nano-laminated)與超晶格(Superlattice)之鐵電氧化鉿鋯 25 3-1 簡介 25 3-2 平面的Nano-laminated 與 Superlattice製程 26 3-2-1 晶圓清洗 26 3-2-2 High-K介電層與閘極金屬沉積 26 3-2-3 實驗結果 28 3-3 Nano-laminated與 Superlattice鰭式電晶體製程 30 3-4 實驗結果 31 3-5 結論 34 4 第四章 三維垂直式NAND架構製程 35 4-1 簡介 35 4-2 三維垂直鐵電穿隧接面元件結構製程 36 4-2-1 光罩設計 36 4-2-2 Align Mark和晶圓清洗 39 4-2-3 字元線(Word line)製程 40 4-2-4 成長二氧化矽保護層 40 4-2-5 沉積High-K介電層 42 4-2-6 位元線(Bit line)製程 43 4-3 實驗結果 44 4-4 結論 47 5 第五章 總結與未來展望 48 5-1 總結 48 5-2 未來展望 48 6 參考資料 49 7 Publication 54

    [1] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J. Bokor, and C. Hu, “FinFET—A self-aligned double-gate MOSFET scalable beyond 20 nm, ” IEEE Trans. on Electron Device, vol. 47, no.12, pp. 2320-2325, 2000.
    [2] N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillorn, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, “Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET, ” in VLSI Technology Symp., 2017, pp. 230-231.
    [3] R. Loo, A. Y. Hikavyy, L. Witters, A. Schulze, H. Arimura, D. Cott, J. Mitard, C. Porret, H. Mertens, P. Ryan, J. Wall, K. Matney, M. Wormington, P. Favia, O. Richard, H. Bender, A. Thean, N. Horiguchi, D. Mocuta and N. Collaert, “Processing 66 Technologies for Advanced Ge Devices, ” ECS J. Solid State Sci. Technol., vol. 6, no. 1, pp. 14-20, 2017.
    [4] Jong-Ho Bae , Daewoong Kwon, Namho Jeon, Graduate Student Member, IEEE, Suraj Cheema , Ava Jiang Tan, Chenming Hu , Life Fellow, IEEE, and Sayeef Salahuddin, “Highly Scaled, High Endurance, -Gate, Nanowire Ferroelectric FET Memory Transistors” IEEE ELECTRON DEVICE LETTERS, VOL. 41, NO. 11, NOVEMBER 2020
    [5] S.-Y. Wu, “Metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices, vol. 21, no. 8, pp. 499–504, Aug. 1974, doi: 10.1109/T-ED.1974.17955
    [6] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., vol. 99, no. 10, Sep. 2011, Art. no. 102903, doi: 10.1063/1.3634052
    [7] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 99, no. 11, Sep. 2011, Art. no. 112901, doi: 10.1063/1.3636417
    [8] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, “Incipient ferroelectricity in al-doped HfO2 thin films,” Adv. Funct. Mater., vol. 22, no. 11, pp. 2412–2417, Jun. 2012.
    [9] G. Karbasian, R. dos Reis, A. K. Yadav, A. J. Tan, C. Hu, and S. Salahuddin, “Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2,” Appl. Phys. Lett., vol. 111, no. 2, Jul. 2017, Art. no. 022907, doi: 10.1063/1.4993739.
    [10] Violetta Sessi,* Maik Simon, Halid Mulaosmanovic, Darius Pohl, Markus Loeffler, Tom Mauersberger, Franz P. G. Fengler, Terence Mittmann, Claudia Richter, Stefan Slesazeck, Thomas Mikolajick, and Walter M. Weber,“A Silicon Nanowire Ferroelectric Field-Effect Transistor,” Adv. Electron.Mater.2020, 6, 1901244
    [11] W. Arden, M.Brillouët, P.Cogez, M.Graef, B.Huizing, R.Mahnkopf, “More-than-Moore” White Paper, http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf (accessed:August 2019)
    [12] H.-S. P. Wong, S. Salahuddin, Nat. Nanotechnol.2015, 10, 191.
    [13] S.-Y. Wu, IEEE Trans. Electron Devices1974, 21, 499.
    [14] S.Dünkel, M.Trentzsch, R.Richter, P.Moll, C.Fuchs, O.Gehring, M.Majer, S.Wittek, B.Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, S. Beyer, in 2017 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ 2017, pp. 19.7.1–19.7.4
    [15] E. T. Breyer, H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, in 2017 IEEE Int. Electron Devices Meeting(IEDM), IEEE, Piscataway, NJ 2017, pp. 28.5.1–28.5.4.
    [16] I. Chilibon, and J. Marat-Mendes, “Ferroelectric ceramics by sol-gel methods and applications: a review,” Journal of Sol-Gel Science and Technology, vol. 64, no. 3, pp. 571-611, Dec 2012.
    [17] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick, “Ferroelectricity in HfO2 Enables Nonvolatile Data Storage in 28 nm HKMG, ’’ in VLSI Technology Symp., 2012, pp. 25-26.
    [18] K. Ni, M. Jerry, J. A. Smith, and S. Datta, “A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs,” in VLSI Technology Symp., 2018, pp. 131-132.
    [19] Qing Luo1, 2,Tiancheng Gong1,2 ,Yan Cheng3 , Qingzhu Zhang1,2, Haoran Yu1 , Jie Yu1 , Haili Ma1 , Xiaoxin Xu1,2, Kailiang Huang1,2, Xi Zhu1 , Danian Dong1 , Jiahao Yin1,2, Peng Yuan1 ,Lu Tai1 , Jianfeng Gao1 , Junfeng Li1 , Huaxiang Yin1,2, Shibing Long1, 2, Qi Liu1, 2, HangbingLv*1, 2,Ming Liu*1, “Hybrid 1T e-DRAM and e-NVM Realized in One 10 nm node Ferro FinFET device with Charge Trapping and Domain Switching Effects, ’’ , IEDM, 47-50, 2018
    [20] Shinji Migita1* , Hiroyuki Ota1 , Shutaro Asanuma1 , Yukinori Morita1 , and Akira Toriumi “Accelerated ferroelectric phase transformation in HfO2/ZrO2 nanolaminateds ”published online May 4, 2021
    [21] K. Florent1 , M. Pesic2 , A. Subirats, K. Banerjee, S. Lavizzari3 , A. Arreghini, L. Di Piazza, G. Potoms, F. Sebaai, S. R. C. McMitchell, M. Popovici, G. Groeseneken1 and J. Van Houdt1 “Vertical Ferroelectric HfO2 FET based on 3-D NAND Architecture: Towards Dense Low-Power Memory ” IEDM, 47-50, 2018 M. Pešić, S. Knebel, M. Hoffmanmm, C. Richter, T. Mikolajick, and U. Schroeder, “How to make DRAM non-volatile? Antiferroelectric: A new paradigm for universal memories, ” in IEDM Tech. Dig., Dec. 2016, pp. 298-301, doi: 10.1109/IEDM.2016.7838398.
    [22] K.-Y. Hsiang, C.-Y. Liao, J.-H. Liu, J.-F. Wang, S.-H. Chiang, S.-H. Chang, F.-C. Hsieh, H. Liang, C.-Y. Lin, Z.-F. Lou, T.-H. Hou, C. W. Liu, and M. H. Lee*, “Bilayer-based Antiferroelectric HfZrO2 Tunneling Junction with High Tunneling Electro resistance and Multilevel Nonvolatile Memory,” IEEE Electron Device Letter, vol. 42, no. 10, pp. 1464-1467, 2021.
    [23] D. K. Simon, P. M. Jordan, T. Mikolajick, and I. Dirnstorfer, “On the Control of the Fixed Charge Densities in Al2O3‑Based Silicon Surface Passivation Schemes, ” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28215–28222, 2015.
    [24] K. Kitaa, and A. Toriumi, “Origin of electric dipoles formed at high-k/SiO2 interface, ” Appl. Phys. Lett., 94, 132902, 2009.
    [25] K. T. Chen, C. Y. Liao, C. Lo, H. Y. Chen, G. Y. Siang, S. Liu, S. C. Chang, M. H. Liao, S. T. Chang, and M. H. Lee, “Improvement on Ferroelectricity and Endurance of Ultra-Thin HfZrO2 Capacitor with Molybdenum Capping Electrode, ” in Electron Devices Technology and Manufacturing Conference (EDTM), 2019, pp. 62-64.
    [26] A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,” World journal of nano science and engineering, vol. 2, no. 3, pp. 154-160, 2012.
    [27] H. H. Huang, T. Y. Wu, Y. H. Chu, M. H. Wu, C. H. Hsu, H. Y. Lee, S. S. Sheu, W. C. Lo, and T. H. Hou, “A Comprehensive Modeling Framework for Ferroelectric Tunnel Junctions, ” in International Electron Devices Meeting (IEDM), 2019, pp. 759-762.
    [28] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. D. Kim, and C. S. Hwang, “Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer, ” Appl. Phys. Lett., vol. 105, no. 19, p. 192903, 2014.
    [29] C.-Y. Liao, K.-Y. Hsiang, F.-C. Hsieh, S.-H. Chiang, S.-H. Chang, J.-H. Liu, C.-F. Lou, C.-Y. Lin, T.-C. Chen, C.-S. Chang, and M. H. Lee, “Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory,” IEEE Electron Device Letter, vol. 42, no. 4, pp. 617-620, 2021.
    [30] M. H. Lee, K. T. Chen, C. Y. Liao, S. S. Gu, G. Y. Siang, Y. C. Chou, H. Y. Chen, J. Le, R. C. Hong, Z. Y. Wang, S. Y. Chen, P. G. Chen, M. Tang, Y. D. Lin, H. Y. Lee, K. S. Li, and C. W. Liu, “Extremely Steep Switch of Negative-Capacitance Nanosheet GAA-FETs and FinFETs, ” in International Electron Devices Meeting (IEDM), pp. 735-738, 2018.
    [31] K.-Y. Hsiang, Graduate Student Member, IEEE, C.-Y. Liao, Graduate Student Member, IEEE, J.-H. Liu, C.-Y. Lin, J.-Y. Lee, Z.-F. Lou, F.-S. Chang, W.-C. Ray, Z.-X. Li, H.-C. Tseng, C.-C. Wang, M. H. Liao, Member, IEEE, T.-H. Hou, Senior Member, IEEE, and M. H. Lee, Senior Member, IEEE, “Dielectric Layer Design of Bilayer Ferroelectric and Antiferroelectric Tunneling Junctions Toward 3D NAND-Compatible Architecture ”

    無法下載圖示 本全文未授權公開
    QR CODE