研究生: |
鄭智仁 Chih-Jen Cheng |
---|---|
論文名稱: |
二疊紀高緯度地區的古環境—澳洲雪梨盆地與塔斯曼島腕足動物化石穩定同位素紀錄 Permian High Latitude Environment Indicated by Stable Isotope Records of Brachiopod Shells from the Southern Sydney Basin and Tasmania Island, Australia |
指導教授: |
米泓生
Mii, Horng-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 二疊紀 、古環境 、澳洲 、穩定同位素 、腕足動物 |
英文關鍵詞: | Permian, Paleoenvironmental, Australia, stable isotope, Brachiopod |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用澳洲東南部雪梨盆地與塔斯曼島,早至中二疊紀地層中腕足動物化石的穩定碳、氧同位素成分來重建南半球高緯度地區的古環境。藉由分析Sakmarian期的Wasp Head Formation (WH)、晚Artinskian期的Pebbly Beach Formation (LoUPB、HiUPB)、Kungurian期的Snapper Point Formation (SP)、晚Kungurian期的Wandrawandian Formation (出露地點Warden Head;WarH)、Roadian期的Wandrawandian Formation (出露地點Penguin Head;PH)、Wordian期的Broughton Formation (BH)以及位於塔斯曼島Artinskian階的Berriedale Limestone (BL)共92個標本,由喙部向最長殼長方向切開製作薄片,觀察其微細構造的保存狀況,並以陰極射線顯微鏡觀察殼體發光分佈情形,評估標本是否受到成岩作用影響。
本研究由二疊紀腕足動物和二枚貝殼體取樣分析共638個分析點,其中401個分析點取自保存良好、不發光(NL)部分,其穩定碳、氧同位素數值可用來重建古環境。另外由標本中挑選20個腕足標本及2個二枚貝標本進行電子微探針分析殼體的元素含量(包括Si、Al、 Fe、Mn、Na、S、Sr、Mg、Ca等)以進一步確認標本保存狀態。各標本NL部分Si、Fe、Mn的元素含量皆低於偵測極限,進一步確認NL部分為未受成岩作用影響而保存良好的腕足殼體部分。
東澳保存良好的平均碳同位素數值(NL)皆大於5‰,與盤古大陸東邊的紀錄有相似的趨勢,和盤古大陸西邊則呈現完全不同的震盪,表示盤古大陸東南部的海域與古地中海有相似的海水循環。最高值的碳同位素7‰位於晚Kungurian期的下部Wandrawandian地層,可能受到湧升流系統的影響。
早至中二疊世在高緯度和低緯度間有氧同位素差值受冰期的影響很明顯。大部分東澳保存良好的平均氧同位素數值(NL)都比低緯度來的大,如早 Sakmarian期(-0.3‰)、晚Artinskian期早期 (-1.1‰)、晚Kungurian期(-1.0‰)、Roadian期(-0.2‰)、Wordian期(-0.7‰),而早Artinskian期(-2.1‰)和早Kungurian期(-2.5‰)與低緯度地區氧同位素數值相近,晚Artinskian期晚期 (-3.9‰)則低於西盤古大陸低緯度地區的氧同位素數值。假設二疊紀全球海水氧同位素數值約為-1‰,大部分地層可反映出二疊紀高緯度地區較冷的溫度(12-16°C),而Berriedale Limestone (21°C, 早Artinskian期)、higher Upper Pebbly Beach 地層 (29°C, 晚Artinskian期晚期)、Snapper Point 地層(22°C, 早Kungurian期)與低緯度地區間的溫度梯度較弱,表示此時是屬於冰層體積減少的間冰期。
This study constructed the Early to Middle Permian paleoenvironrnent of southern high latitude by analyzing the stable isotope compositions of brachiopod shells from the Southern Sydney Basin and Tasmania , Australia. Ninety-two brachiopod and bivalve shells we collected from 7 formations (Sakmarian to Wordian) in Sydney Basin. Fossil brachiopods were collected from the Berriedale Limestone Formation (Artinskian) in Tasmania. All sample were thin sectioned and examined under the petrographic and cathodoluminescence microscopes for evaluating shell preservation. In addition, 20 brachiopod shells and 2 bivalve shells were selected to measure the element contents for further evaluation of shell preservation.
A total of 638 isotopic analyses were performed. Only 401 isotopic analyses were determined micro-sampled from well preserved portions (non luminescent ; NL) to provide original environment signals. The average carbon isotope values of the NL brachiopod shells from these intervals are greater than 5‰, were comparable to those of eastern Pangea, but different from those of western Pangea. This comparability with eastern Pangea in carbon isotope records is interpreted to indicate similar oceanographic conditions and chemistry between southeastern Gondwana shelf water and that of eastern Pangea. The highest value of 7‰ at Lower Wandrawandian Siltstone (late Kungurian) indicate the possible presence of upwelling systems and thus increasing burial rate of organic matter.
Difference in oxygen isotope values between high southern latitudes and low latitudes fluctuated during Early to Middle Permian. Mean oxygen isotope values of NL brachiopod shells were heavier than those of low latitudes in early Sakmarian (-0.3‰), early Late Artinskian (-1.1‰), late Kungurian (-1.0‰), Roadian (-0.2‰), and Wordian (-0.7‰); comparable to those of western Pangea in early Artinskian (-2.1‰) and early Kungurian (-2.5‰); and lighter than those of western Pangea in late Late Artinskian (-3.9‰). Assuming the oxygen isotope value was -1‰ for Permian seawater in southeast Australia, most of the calculated oxygen isotope temperatures (between 12°C and 16°C) reflected southeast Australia's high latitude cool temperature. However, the higher Upper Pebbly Beach Formation (29°C, late Late Artinskian), Berriedale Limestone (21°C, early Artinskian), Snapper Point Formation (22°C, early Kungurian) intervals were apparently relatively warmer, which may be attributed to a combination of warmer temperature and depleted seawater oxygen isotope composition in this region.
杜遠生、Shi G. R.,2003、東澳大利亞悉尼盆地南部二疊紀的地層、沉積環境與盆地演化:古地理學報,第五卷,第二期。
徐桂榮,古生物教程-第十二章,腕足動物門,1987,地質出版社,p.145-172
Anderson, T. F. and Schneidermann, N., 1973, Stable isotope relationships in pelagic limestones from the Central Caribbean, Leg 15, Deep Sea Drilling Project, in Edgar, N. T., Saunders, J. B., Bolli, H. M., Boyce, R. E., Broecker, W. S., Donnelly, T. W., Gieskes, J. M., Hay, W. W., Horowitz, R. M., Maurrasse, F., Perez Nieto, H., Prell, W., Premoli Silva, I., Riedel, W. R., Schneidermann, N., Waterman, L. S., Kaneps, A. G., and Herring, J. R., eds, Initial reports of the Deep Sea Drilling Project, covering Leg 15 of the cruises of the drilling vessel Glomar Challenger, San Juan, Puerto Rico to Cristobal, Panama; December 1970-February 1971 :Initial Reports of the Deep Sea Drilling Project, no. 15, p. 795-803.
Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. Sl., eds, Stable isotopes in sedimentary geology: SEPM short Course, no. 10, p. 1-151.
Angiolini, L., Jadoul, F., Leng, M. J., Stephenson, M. H., Rushton, J., Chenery, S., and Crippa, G., 2009, How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells: Journal of the Geological Society, London, v.166, p. 933–945.
Armendáriz, M., Rosales, Idoia., and Quesada, C., 2008,Oxygen isotope and Mg/Ca composition of Late Viséan (Mississippian) brachiopodshells from SW Iberia: Palaeoclimatic and palaeogeographic implications in northern Gondwana: Palaeogeography, Palaeoclimatology, Palaeoecology v.268, p.65–79.
Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.
Baldini, J. U. L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., and Railsback, L. B., 2005, Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England: Earth and Planetary Science Letters, v.240, p.486-494.
Bembrick, C., Herbert, C., Scheibner, E., and Stuntz, J., 1980, Structural subdivision of the Sydney Basin. In A Guide to the Sydney Basin, ed. by Herbert, C., and Helby, R., Geological Survey of New South Wales Bulletin v.26, p.2-9.
Bigg, G.R., and Rohling, E.J., 2000, An oxygen isotope data set for marine water: Journal of Geophysical Research, v. 105, p. 8527–8535.
Birgenheier L. P., Frank, T. D., Fielding , C. R., and Rygel, M. C., 2010, Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the late Palaeozoic Ice Age: Palaeogeography, Palaeoclimatology, Palaeoecology v.286, p.178–193.
Bowman, H. N. 1974, Geology of the Wollongong, Kiama and Robertson 1:50,000 Sheets. Geological Survey of New South Wales, Sydney, 179p.
Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography: Chemical Geology, v. 198, p. 305-334.
Bruckschen, P., Oesmann, S., and Veizer, J., 1999, Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics: Chemical Geology, v. 161, p. 127-163.
Carpenter, S. J., and Lohmann, K. C., 1995, δ18O and δ13C values of modern brachiopod shells: Geochimica et Cosmochimica Acta, v. 59, no. 18, p. 3749-3764.
Carr, W., & Kemmis, S. 1983, Becoming critical: knowing through action research. Geelong, Vic.: Deakin University Press.
Clarke, M.J., Banks, M. R. 1975, The stratigraphy of the Lower ( Permo-Carboniferous ) part of the Parmeener Super-group, Tasmania, in: Campbell, K. S. W. (ed.). Gondwana Geology. p.453–467.
Conkey L. E., 1986, Red spruce tree-ring widths and densities in eastern North America as indicators of past climate: Quaternary Research, v.26, p.232-243.
Coplen, T. B., and Schlanger, S. O., 1973, Oxygen and carbon isotope studies of carbonate sediments from Site 167, Magellan Rise, Leg 17: Initial Reports of the Deep Sea Drilling Project, no. 17, p. 505-509.
Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, no. 10, p. 1345-1372.
Dickins, J.M., 1996. Problems of a Late Palaeozoic glaciation in Australia and Permian Australia subsequent climate in the Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, v.125, p.185-197.
Elderfield, H., Gieskes, J. M., Baker, P. A., Oldfield, R. K., Hawkesworth, C. J., and Miller, R., 1982, 87Sr/88Sr and 18O/16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau: Geochimica et Cosmochimica Acta, v. 46, no. 11, p. 2259-2268.
Epstein, S., and Mayeda, T., 1953, Variation of O18 content of water from natural sources: Geochimica et Cosmochimica Acta, v.4, p.213-224.
Fairbanks, R. G., 1989, A 17,000-year glacio-eustatic sea level record; influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation: Nature, v. 342, no. 6250, p.637-642.
Fairbanks, R. G., and Matthews, R. K., 1978, The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies: Quaternary Research, v. 10, no. 2, p. 181-196.
Fielding, C, R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J., 2008, Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime: Journal of the Geological Society, London, v.165, p.129–140.
Folk, R. L., 1968, Petrology of sedimentary rocks: Austin, Tex.: Hemphill Pub. Co., 170p.
Frank, T. D., and Lohmann, K. C., 1996, Diagenesis of fibrous magnesian calcite marine cement: Implications for the interpretation of δ18O and δ13C values of ancient equivalents: Geochimica et Cosmochimica Acta, v. 60, no. 13, p. 2427-2436.
Goericke, R. and Fry, B., 1994, Variations of marine plankton 13C with latitude, temperature and dissolved CO2 in the world ocean: Global Biogeochemical Cycles, v. 8, p.85–90.
Graig, H., and Gordon, L. I., 1965, Deuterium and oxygen 18 variation in the ocean and the marine atmosphere, in Torgiorgi, E., ed., Second Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures: Pisa, Consiglio Nazionale delle Richerche, p.9-130.
Grossman, E. L., 1994, The carbon and oxygen isotopic record during the evolution of Pangea: Carboniferous to Triassic, in Klein, G, D,. ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, Zenith, and breakup of a supercontinent: Geological Society of America Special Paper 288, p. 207-228.
Grossman, E. L., Mii, H. S., and Yancey, T. E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States; implications for Carboniferous paleoceanography: Geological Society of America Bulletin, v. 105, no. 10, p. 1284-1296.
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J., and Mii, H. S., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v.268, p.222-233.
Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L., 1994, Tropical temperature variations since 20,000 years ago; modulating interhemispheric climate change: Science, v. 263, no. 5147, p. 663-665.
Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p.441-444.
Hoefs, J., 1997, Stable isotope geochemistry: 4th ed.: Springer-Verlag Berlin Heidelberg: New York, 201p.
Hughes M. K., Schweingruber F. H., Cartwright D., and Kelly P. M., 1984, July−August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data: Nature, v.308, p.341-344.
Isbell, J.L., Miller, M.F., Wolfe, K.L. & Lenaker, P.A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M.A. & Archer, A.A. (eds) Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Papers, 370, 5–24.
Ivany, L.C., and Runnegar, B., 2010, Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater: Geology, v.38, p.1027-1030.
James, N. P., Bone, Y., and Kyser, T. K., 1997, Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia: Geology, v. 25, no. 6, p. 551-554.
Johnsen, S. J., and Vinther, B.M., 2007, ICE CORE RECORDS | Greenland Stable Isotopes: Encyclopedia of Quaternary Science, p.1250-1258.
Jones, A. T., Frank, T. D., Fielding, C. R., 2006, Cold climate in the eastern Australian mid to late Permian may reflect cold upwelling waters: Palaeogeography, Palaeoclimatology, Palaeoecology v.237, p.370–377.
Jouzel, J., Stiévenard, M., Johnsen, S. J., Landais, A., Masson-Delmotte, V., Sveinbjornsdottir, A., Vimeux, F., Grafenstein, U. von., and White, J. W. C., 2007, The GRIP deuterium-excess record: Quaternary Science Reviews, v.26, p.1-17.
Korte, C., Jasper, T., Kozur, H. W., Veizer, J., 2005, δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciations: Palaeogeography, Palaeoclimatology, Palaeoecology v.224, p.333– 351.
Korte, C., Jones, P. J., Brand, U., Mertmann, D., Veizer, J., 2008, Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation: Palaeogeography, Palaeoclimatology, Palaeoecology v.269, p.1–16.
Kutzbach, J.E., Ziegler, A.M., 1993. Simulation of Late Permian climate and biomes with an atmosphere/ocean model: Comparisons with observations. Royal Society of London Philosophical Transactions, ser. B v.341, p.327-340.
Li, Z. X., and Powell, C. M., 2001, An outline of the paleogeographic evolution of the Australian regions since the beginning of the Neoproterozoic: Earth-Science Reviews, v.53, p.237–277.
Lorius, C., Merlivat, L., Jouzel, J., and Pourchet, M., 1979, A 30,000-yr isotope climatic record from Antarctic ice: Nature, v. 280, p. 644-648.
Lowenstam, H. A., 1961, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans: Journal of Geology, v. 69, no. 3, p. 241-260.
Machel, H. G., 1985, Cathodoluminescence in calcite and dolomite and its chemical interpretation: Geoscience Canada, v. 12, p. 139-147.
Maier, C., Felis, T., Pätzold, J., and Bak, R. P. M., 2004, Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites: Marine Geology, v.207, p.193-208.
Matter, A., Douglas, R. G., and Perch-Nielsen, K., 1975, Fossil preservation, geochemistry, and diagenesis of pelagic carbonates from Shatsky Rise, Northwest Pacific: Initial Reports of the Deep Sea Drilling Project, v. 32, p. 891-921.
Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Journal of Sedimentary Petrology, v. 44, p. 837-861.
Mii, H. S., and Grossman, E. L., 1994, Late Pennsylvanian seasonality reflected in the δ18O and elemental composition of a brachiopod shell: Geology, v. 22, no. 7, p. 661-664.
Mii, H. S., Grossman, E. L., and Yancey, T. E., 1997, Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen; global change or diagenetic artifact?: Geology, v. 25, no. 3, p. 227-230.
Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.
Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., Egorov, A., and Yegorov, A., 2001, Isotopic records of brachiopod shells from the Russian Platform; evidence for the onset of Mid-Carboniferous glaciation: Chemical Geology, v. 175, no. 1-2, p. 133-147.
Mook, W. G.,, 1971. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate: Palaeogeography, Palaeoclimatology, Palaeoecology, v.9, p.245-263.
Moros, M., Deckker, P. D., Jansena, E., Perner, K., and Telford, R. J., 2009, Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia: Quaternary Science Reviews, v.28, p.1932-1940.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates: The Journal of Chemical Physics, v. 51, no. 12, p. 5547-5558.
Pierson, B. J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.
Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones: Geological Society of America Bulletin, v. 97, no. 10, p. 1262-1269.
Rahimpour-Bonab, H., Bone, Y., and Moussavi-Harami, R., 1997, Stable isotope aspects of modern molluscs, brachiopods, and marine cements from cool-water carbonates, Lacepede Shelf, South Australia: Geochimica et Cosmochimica Acta, v.61, p.207-218.
Railsback, L. B., Anderson, T. F., Ackerly, S. C., and Ciane, J. L., 1989, Paleoceanographic modeling of temperature-salinity profiles from stable isotope data: Paleoceanography, v.4, p.585-591.
Ramli N. and Crook K. A. W. 1978. Early Permian depositional environments, southern Sydney Basin. Australian Petroleum Exploration Association Journal v.18, p.70–76.
Rao, C. P., and Green, D.C., 1982, Oxygen and carbon isotopes of early Permian cold-water carbonates, Tasmania, Australia: Journal of Sedimentary Research v.52, p.1111-1125.
Rao, C.P., 1981, Criteria for recognition of cold-water carbonate sedimentation: Berriedale Limestone (Lower Permian), Tasmania, Australia: Journal of Sedimentary Petrology, v.51, p.491–506.
Rogala, B., James, N. P., and Reid, C. M., 2007, Deposition of polar carbonates during interglacial highstands on an early Permian shelf, Tasmania: Journal of Sedimentary Research, v.77, p.587–606.
Ruddiman, W. F., 2000, Earth's Climate-past and future: New York. 441p.
Runnegar, B., 1979, Ecology of Eurydesma and the Eurydesma fauna, Permian of eastern Australia: Alcheringa, v.3, p.261–285.
Savin, S. M., 1977, The history the Earth's surface temperature during the past 100 million year: Annual Review of Earth and Planetary Sciences, v.5, p.319-355.
Schmidt, G.A., Bigg, G.R., and Rohling, E.J., 1999, Global seawater oxygen-18database, Version 1.19: http://data.giss.nasa.gov/o18data/ (April 2010).
Schrag, D. P., Hampt, G., and Murray, D. W., 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean: Science, v. 272, no. 5270, p. 1930-1932.
Scotese, C. R., and Langford, R. P., 1995, Pangea and the paleogeography of the Permian, in Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., eds., The Permian of Northern Pangea: Paleogeography, Paleoclimates, Stratigraphy, v.1, p.3–19.
Scotese, C. R., Boucot, A.J., and McKerrow, W. S., 1999, Gondwana palaeogeography and palaeoclimatology: Journal of African Earth Scince, v. 28, no. 1, p. 99-114.
Shackleton, N. J., and Opdyke, N., 1977, oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale: Quaternary Research, v.3, p.39-55.
Sharp Z., 2007, Principles of stable isotope geochemistry: Pearson Prentice Hall, 344p.
Shen, S. Z.,and Shi, G. R., 2004, Capitanian (Late Guadalupian, Permian) global brachiopod palaeobiogeography and latitudinal diversity pattern: Palaeogeography, Palaeoclimatology, Palaeoecology, v.208, p.235-262.
Shi, G. R., and Weldon, E. A., 2008, Permain stratigraphy and palaeontology of the southern Sydney Basin, south-east Australia –A field excursion guide (2007 version). The international symposium and field workshop on the Permian of Gondwana, as exemplified in the southern Sydney Basin, south-east Australia: Stratigraphy, sedimentology and palaeontology, Deakin University, Melbourne Campus, 74p.
Singh, G., and Luly, J., 1991, Changes in vegetation and seasonal climate since the last full glacial at Lake Frome, South Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v84, p.75-79 83-86.
Spero, H. J., Bijma, J., Lea, D. W. and Bemis, B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, 497–500.
Stanley, S. M., 1998, Earth system history: W.H. Freeman, New York, 615p.
Taylor, E. L., a, and Ryberg, P. E., 2007, Tree growth at polar latitudes based on fossil tree ring analysis: Palaeogeography, Palaeoclimatology, Palaeoecology, v.255, p.246-264.
Thiede, J., Bauch, D., Erlenkeuser, H., Winckler, G., and Pavlova G., 2002, Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions: Marine Micropaleontology, v. 45, p. 83–99.
Tye, S.C., Fielding, C.R., and Jones, B.G., 1996. Stratigraphy and sedimentology of the Permian Talaterang and Shoalhaven Groups in the southernmost Sydney Basin, New South Wales. Australian Journal of Earth Sciences 43, 57–69.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
Veevers, J. J., and Powell, M., 1987, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica, Geological Society of America Bulletin, v. 98, no. 4, p. 475-487.
Veizer, J., 1983, Chemical diagenesis of carbonates: Theory and application of trace element technique, in Arthur, M. A., and others, eds., Stable isotopes in sedimentary geology: Society of Economic Paleontologists and Mineralogists Short Course No. 10, p. 3-1-3-100.
Williams, A., 1968, Evolution of the shell structure of articulate brachiopods: Palaeontological Association of London Special Papers in Paleontology, no. 2, 55p.
Williams, P. W., Marshall, A., Ford, D. C., and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: The Holocene, v.9, p.649-657.
Winguth, A. M. E., Heinze, C., Kutzbach, J. E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D., Rees, A., and Ziegler, A. M., 2002, Simulated warm polar currents during the middle Permian: Paleoceanography v.17, p.1057.
Yamamoto, K., Asami, R., and Iryu, Y., 2010, Carbon and oxygen isotopic compositions of modern brachiopod shells from a warm-temperate shelf environment, Sagami Bay, central Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, v.291, p.348-359.
Ziegler, A.M., Hulver, M.L., Roeley, D.B., 1997,Permian world topography and climate. In: Martini, I.P. (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous–Permian and Proterozoic. Oxford Univ. Press, New York, p.111– 146.