研究生: |
吳紹瑀 Wu, Shao-Yu |
---|---|
論文名稱: |
單次性高低認知要求運動對成年人抑制控制之影響 Comparing the Effects of different cognitive demand during single bout exercise on inhibitory control in adults |
指導教授: |
洪聰敏
Hung, Tsung-Min |
口試委員: |
洪聰敏
Hung, Tsung-Min 黃崇儒 Huang, Chung-Ju 洪巧菱 Hung, Chiao-Ling |
口試日期: | 2023/02/14 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 高強度間歇運動 、抑制控制 、干擾控制 、急性運動 、事件關聯電位 |
英文關鍵詞: | cognitive demand, single bout exercise, executive function, ERP |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300287 |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:過去多在探討運動對認知功能的影響。越來越多證據指出在運動中加入認知要求,對促進認知功能的效果更好。本研究目的為:一、探討單次性運動中加入高與低的認知要求對於成年人抑制控制之影響。二、探討特定種類的認知要求是否能夠促進特定的執行功能。方法:本研究招募 30 名成年人,並採用組內設計的方式使每一位參與者皆完成控制情境 (AC)、低認知要求運動情境 (LE)以及高認知要求運動情境 (HE)。運動前後使用Flanker task以及SRT (simple reaction time) task 進行測量。結果:行為結果顯示在高認知要求運動情境的Flanker反應時間進步量顯著高於控制情境,且在不一致情境的Flanker測驗中,高認知要求運動情境下的反應時間進步量也高於低認知情境。三個情境之間的SRT task反應時間進步量則沒有顯著差異。而P3振幅以及P3潛時則皆無顯著差異。討論與結論:在運動中加入認知要求能夠有效的促進成年人的抑制控制,且加入的認知要求劑量越多則對抑制控制的促進效果越好。另外,在運動中加入特定的認知要求就能夠促進特定的執行功能。
The aim of this study was to examine the effects of cognitive demand during acute exercise on the inhibitory control. In a within-subject design, 30 male participants (age = 24 ± 3.7 years) performed 20-min sessions of active control (AC), low cognitive demand exercise (LE), and high cognitive demand exercise (HE) on separate days in counterbalanced order. Following each session, a flanker task and a SRT (simple reaction time) task were performed to assess inhibitory control and processing speed. The P3 component of event-related brain potentials (ERPs) was measured during flanker task and SRT task. Behavioral data showed that the participants performed significantly larger improvement in flanker reaction time following HE compared with AC condition. There was insignificantly different improvement in the SRT reaction time among three conditions. Electrophysiological data revealed that there was no significant different P3 amplitude and latency between three conditions. In conclusion, the findings suggest that adding cognitive demand to exercise could promote inhibitory control in adults. In addition, different type of cognitive demand might facilitate to different executive function.
Anderson, M. C., & Levy, B. J. (2009). Suppressing unwanted memories. Current Directions in Psychological Science, 18(4), 189-194.
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.
Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4), 485.
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118(1), 122-141.
Barcelos, N., Shah, N., Cohen, K., Hogan, M. J., Mulkerrin, E., Arciero, P. J., Cohen, B. D., Kramer, A. F., & Anderson-Hanley, C. (2015). Aerobic and Cognitive Exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. Journal of the International Neuropsychological Society, 21(10), 768-779.
Benarroch, E. E. (2009). The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology, 73(20), 1699-1704.
Bender, V., & McGlynn, G. (1976). The effect of various levels of strenuous to exhaustive exercise on reaction time. European journal of applied physiology and occupational physiology, 35(2), 95-101.
Benzing, V., Heinks, T., Eggenberger, N., & Schmidt, M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PloS one, 11(12), e0167501.
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental review, 30(4), 331-351.
Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental review, 29(3), 180-200.
Borella, E., Carretti, B., & Pelegrina, S. (2010). The specific role of inhibition in reading comprehension in good and poor comprehenders. Journal of Learning disabilities, 43(6), 541-552.
Brown, T. E., & Landgraf, J. M. (2010). Improvements in executive function correlate with enhanced performance and functioning and health-related quality of life: evidence from 2 large, double-blind, randomized, placebo-controlled trials in ADHD. Postgraduate medicine, 122(5), 42-51.
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience letters, 441(2), 219-223.
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental neuropsychology, 19(3), 273-293.
Chang, Y.-K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain research, 1453, 87-101.
Chang, Y.-K., Tsai, C.-L., Hung, T.-M., So, E. C., Chen, F.-T., & Etnier, J. L. (2011). Effects of acute exercise on executive function: a study with a Tower of London Task. Journal of Sport and Exercise Psychology, 33(6), 847-865.
Chu, C.-H., Alderman, B. L., Wei, G.-X., & Chang, Y.-K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73-81.
Chu, C.-H., Kramer, A. F., Song, T.-F., Wu, C.-H., Hung, T.-M., & Chang, Y.-K. (2017). Acute exercise and neurocognitive development in preadolescents and young adults: An ERP study. Neural plasticity, 2017.
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological science, 14(2), 125-130.
Cui, J., Zou, L., Herold, F., Yu, Q., Jiao, C., Zhang, Y., Chi, X., Müller, N. G., Perrey, S., & Li, L. (2020). Does Cardiorespiratory Fitness Influence the Effect of Acute Aerobic Exercise on Executive Function? Frontiers in Human Neuroscience, 14.
Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037-2078.
Davis, J. C., Marra, C. A., Najafzadeh, M., & Liu-Ambrose, T. (2010). The independent contribution of executive functions to health related quality of life in older women. BMC geriatrics, 10(1), 1-8.
Davranche, K., Burle, B., Audiffren, M., & Hasbroucq, T. (2006). Physical exercise facilitates motor processes in simple reaction time performance: an electromyographic analysis. Neuroscience letters, 396(1), 54-56.
de Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. Journal of science and medicine in sport, 21(5), 501-507.
Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135-168.
Draper, S., McMorris, T., & Parker, J. K. (2010). Effect of acute exercise of differing intensities on simple and choice reaction and movement times. Psychology of Sport and Exercise, 11(6), 536-541.
Drollette, E. S., Pontifex, M. B., Raine, L. B., Scudder, M. R., Moore, R. D., Kao, S. C., Westfall, D. R., Wu, C. T., Kamijo, K., & Castelli, D. M. (2018). Effects of the FITKids physical activity randomized controlled trial on conflict monitoring in youth. Psychophysiology, 55(3), e13017.
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Developmental cognitive neuroscience, 7, 53-64.
Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Med Sci Sports Exerc, 44(10), 2017-2024.
Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children's executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178-186.
Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Medicine and science in sports and exercise, 51(6), 1242.
Fissler, P., Kuester, O., Schlee, W., & Kolassa, I.-T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. Progress in brain research, 207, 403-434.
Gallotta, M. C., Emerenziani, G. P., Iazzoni, S., Meucci, M., Baldari, C., & Guidetti, L. (2015). Impacts of coordinative training on normal weight and overweight/obese children’s attentional performance. Frontiers in Human Neuroscience, 9, 577.
Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., Nielsen, H. B., Secher, N. H., & Ogoh, S. (2018). Maintained exercise‐enhanced brain executive function related to cerebral lactate metabolism in men. The FASEB Journal, 32(3), 1417-1427.
Herold, F., Hamacher, D., Schega, L., & Müller, N. G. (2018). Thinking while moving or moving while thinking–concepts of motor-cognitive training for cognitive performance enhancement. Frontiers in aging neuroscience, 10, 228.
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 9(1), 58-65.
Hillman, C. H., Kamijo, K., & Pontifex, M. B. (2012). The relation of ERP indices of exercise to brain health and cognition. In Functional neuroimaging in exercise and sport sciences (pp. 419-446). Springer.
Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307-314.
Hsieh, S.-S., Chueh, T.-Y., Huang, C.-J., Kao, S.-C., Hillman, C. H., Chang, Y.-K., & Hung, T.-M. (2021). Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. Journal of Sports Sciences, 39(1), 10-22.
Ishihara, T., Sugasawa, S., Matsuda, Y., & Mizuno, M. (2017). The beneficial effects of game-based exercise using age-appropriate tennis lessons on the executive functions of 6–12-year-old children. Neuroscience letters, 642, 97-101.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121.
Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S. C., Cadenas‐Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425.
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high‐intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345.
Kraft, E. (2012). Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Aging, Neuropsychology, and Cognition, 19(1-2), 248-263.
Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., & Soya, H. (2020). Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Frontiers in neuroscience, 13, 1455.
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain research, 1341, 12-24.
Levin, O., Netz, Y., & Ziv, G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. European Review of Aging and Physical Activity, 14(1), 1-23.
Ligeza, T. S., Maciejczyk, M., Kałamała, P., Szygula, Z., & Wyczesany, M. (2018). Moderate-intensity exercise boosts the N2 neural inhibition marker: A randomized and counterbalanced ERP study with precisely controlled exercise intensity. Biological Psychology, 135, 170-179.
Luck, S. J. (2012). Event-related potentials.
Ludyga, S., Gerber, M., Brand, S., Holsboer‐Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology, 53(11), 1611-1626.
Ludyga, S., Mücke, M., Colledge, F., Pühse, U., & Gerber, M. (2019). A combined EEG-fNIRS study investigating mechanisms underlying the association between aerobic fitness and inhibitory control in young adults. Neuroscience, 419, 23-33.
Miller, H. V., Barnes, J., & Beaver, K. M. (2011). Self-control and health outcomes in a nationally representative sample. American journal of health behavior, 35(1), 15-27.
Miller, M. G., Hanson, N., Tennyck, J., & Plantz, K. (2019). A comparison of high-intensity interval training (HIIT) volumes on cognitive performance. Journal of Cognitive Enhancement, 3(2), 168-173.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100.
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., & Ross, S. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the national Academy of Sciences, 108(7), 2693-2698.
O’Leary, K. C., Pontifex, M. B., Scudder, M. R., Brown, M. L., & Hillman, C. H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology, 122(8), 1518-1525.
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and moderators of acute aerobic exercise on subsequent interference control: a systematic review and meta-analysis. Frontiers in psychology, 10, 2616.
Peruyero, F., Zapata, J., Pastor, D., & Cervelló, E. (2017). The acute effects of exercise intensity on inhibitory cognitive control in adolescents. Frontiers in psychology, 8, 921.
Pesce, C., Masci, I., Marchetti, R., Vazou, S., Sääkslahti, A., & Tomporowski, P. D. (2016). Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects. Frontiers in psychology, 7, 349.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22.
Protopapas, A., Archonti, A., & Skaloumbakas, C. (2007). Reading ability is negatively related to Stroop interference. Cognitive psychology, 54(3), 251-282.
Sibley, B. A., Etnier, J. L., & Le Masurier, G. C. (2006). Effects of an acute bout of exercise on cognitive aspects of Stroop performance. Journal of Sport and Exercise Psychology, 28(3), 285-299.
St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly journal of experimental psychology, 59(4), 745-759.
Tavares, J. V. T., Clark, L., Cannon, D. M., Erickson, K., Drevets, W. C., & Sahakian, B. J. (2007). Distinct profiles of neurocognitive function in unmedicated unipolar depression and bipolar II depression. Biological psychiatry, 62(8), 917-924.
Verburgh, L., Königs, M., Scherder, E. J., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British journal of sports medicine, 48(12), 973-979.
Voelcker‐Rehage, C., Godde, B., & Staudinger, U. M. (2010). Physical and motor fitness are both related to cognition in old age. European Journal of Neuroscience, 31(1), 167-176.
Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of applied physiology, 111(5), 1505-1513.
Weng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential effects of acute exercise on distinct aspects of executive function. Medicine and science in sports and exercise, 47(7), 1460-1469.
Will Crescioni, A., Ehrlinger, J., Alquist, J. L., Conlon, K. E., Baumeister, R. F., Schatschneider, C., & Dutton, G. R. (2011). High trait self-control predicts positive health behaviors and success in weight loss. Journal of health psychology, 16(5), 750-759.
Xue, Y., Yang, Y., & Huang, T. (2019). Effects of chronic exercise interventions on executive function among children and adolescents: a systematic review with meta-analysis. British journal of sports medicine, 53(22), 1397-1404.