研究生: |
賴柏佑 Lai Po-Yu |
---|---|
論文名稱: |
基於正規化關聯值與OSort演算法之棘波分類系統在FPGA之實現 Efficient VLSI Architecture for Spike Sorting System Based on Normalized Correlation and OSort Algorithm |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | FPGA 、棘波分類 、棘波偵測 、OSort |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文希望能在FPGA(Field Programmable Gate Array)開發平台上實現棘波分類硬體系統。棘波分類分為三大步驟,棘波偵測、特徵擷取以及分類。此類系統最大的困難點在於,如何正確的偵測到棘波序列中的棘波,以及正確的分類所得到之棘波。特別是在高雜訊的環境之下,很可能會因為雜訊而產生誤判的情形
本論文提出以正規化關聯值(Normalized Correlator)與OSort演算法組合而成之棘波分類系統。棘波偵測選用正規化關聯值是因為這個法則在各種強度的雜訊環境之下都有很不錯的表現,較不易受到雜訊的影響。而後面特徵擷取與分類則是選用OSort演算法,這個演算法不僅可以一次完成兩個步驟,而且還不需要指定分類的群集數量,是非常具有彈性,且準確度高的演算法,甚至還可以用於即時分類。
本論文最後的成果與效能評估,可證明本系統具備正確偵測並且分類棘波的能力。以軟體Matlab程式於個人電腦上運算,並與本論文所實現之系統的結果做比對驗證,可以確保其正確性,並且驗證硬體效能比起軟體運算的效能還要好。
[1] J. H. Schwartz E. R. Kandel and T. M. Jessell. Principles of Neural Science. 2000.
[2] Sarah Gibson, Jack W. Judy, and Dejan Markovic. Spike Sorting: The first step
in decoding the brain. IEEE Signal Processing Magazine, 29(1):124–143, January
2012.
[3] David Ewing Duncan. The Brain-Computer Interface That Let a Quadriplegic
Woman Move a Cup.
http:// www.theatlantic.com/ health/ archive/ 2012/05/ the-
brain-computer-interface-that-let-a-quadriplegic-woman-move-a-cup/
257275/,
May 2012.
[4] NeuroSky Inc. http://neurosky.com/.
[5] M. S. Lewicki. A Review of Methods for Spike Sorting: The Detecion and Clas-
sification of Neural Action Potentials. Netw. Comput. Neural Syst., 9:R53–R78,
1998.
[6] S. Mukhopadhyay and G.C. Ray. A new interpretation of nonlinear energy oper-
ator and its efficacy in spike detection. Biomedical Engineering, 45(2):180–187,
February 1998.
[7] K. Kim and S. Kim. A Wavelet-based Method for Action Potential Detection
from Extracellular Neural Signal Recording with Low Signal-to-Noise Ratio. IEEE
Trans. Biomed. Eng., 50:999–1011, 2003.
[8] M. Appalsamy R. J. Brychta, S. Tuntrakool. Wavelet Method for Spike Detection
in Mouse Renal Sympathetic Nerve Activity. IEEE Trans. Biomed. Eng., 54:82–93,
2007.
[9] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul. Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering. Neural Computation,
16(8):1661–1687, August 2004.
[10] L. S. Smith N. Mtetwa. Smoothing and Thresholding in Neural Spike Detection.
Neurocomputing, 69:1366–1370, 2006.
[11] Wen-Jyi Hwang, Wei-Hao Lee, Shiow-Jyu Lin, and Sheng-Ying Lai. Efficient Ar-
chitecture for Spike Sorting in Reconfigurable Hardware. Sensors, 13(11):14860–
14887, November 2013.
[12] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag New York, 2nd edi-
tion, 2002.
[13] Terence D. Sanger. Optimal unsupervised learning in a single-layer linear feedfor-
ward neural network. Neural Networks, 2(6):459–473, April 1989.
[14] Simon O. Haykin. Neural Networks and Learning Machines. Prentice Hall, 3rd
edition, 2008.
[15] H. Ichihashi S. Miyamoto and K. Honda. Algorithm for Fuzzy Clustering. Springer-
Berlin Heidelberg, 2010.
[16] U. Rutishauser. Online detection and sorting of extracellulary recorded action po-
tentials in human medial temporal lobe recordings. J. Neurosci. Methods, 154:204–
224, 2006.
[17] 王思淮. Spike Detection Based on Normalized Correlation with Automatic Tem-
plate Generation. Master’s thesis, National Taiwan Normal University, 2014.
[18] 徐雅姿. Hardware Implementation for Spike Sorting Based on NoC with OSort
Algorithm. Master’s thesis, National Taiwan Normal University, 2014.
[19] Leslie S. Smith. A tool for synthesizing spike trains with realistic interference.
Journal of Neuroscience Methods, 159(1):170–180, January 2007.
[20] J. W. Judy S. Gibson and D. Markovic. An FPGA-based platform for accelerated
offline spike sorting. Journal of Neuroscience Methods, 215(1):1–11, January 2013.