簡易檢索 / 詳目顯示

研究生: 陳俊廷
Chun Ting Chen
論文名稱: McKibben 人工肌肉上肢外骨架機器人之設計
Design of an upper-limbed exoskeleton robot driven by McKibben artificial muscles
指導教授: 陳俊達
Chen, Chun-Ta
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 外骨架機器人反向運動學反向動力學人工肌肉氣壓缸
英文關鍵詞: exoskeleton robot, inverse kinematics, inverse dynamics, McKibben pneumatic artificial muscle
論文種類: 學術論文
相關次數: 點閱:200下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,中風病患或因意外受傷而導致肢體受創無法行動自理者,須經由物理復健師予以一對一治療,就人力資源分配來說,實乃供不及求。有鑑於此,本論文開發一種針對手臂復健的外骨架機器人以取代人力之不足。所開發的外骨架機器人具有4個自由度,包含肩膀處3個自由度以及手肘處的1個自由度。本文說明建構外骨架機器人的零組件、機械結構的設計和外骨架機器人的操作流程,並建立各零組件的數學模型以及為了能規劃、控制外骨架機器人的運動,根據機器人學推導順向運動學、反向運動學以及反向動力學。而為了簡化反向動力學運算的複雜度,本論文是以準座標建立的Lagrangian方程式來作推導,並使用Robotics Toolbox分析外骨架機器人的順向運動學、反向運動學,以及撰寫Matlab程式模擬外骨架機器人的反向動力學。

    Generally, people who can not perform activities due to the stroke or accidents must be cured by a physical therapist, and it should be operated one by one. However, the manpower sources do not meet so many requests. Therefore, this paper presents an exoskeleton robot for arm rehabilitation to solve for this situation. There are total 4 DOFs on our exoskeleton robot. It is 3 DOFs and 1 DOF on shoulder and elbow, respectively. In this thesis, building components, design and operation of the exoskeleton robot structure are presented. Moreover, mathematical models of devices, forward kinematics, inverse kinematics and inverse dynamics are developed to control the exoskeleton robot. Also, due to a large amount of symbolic computation, the Lagrangian formulation based on the quasi-coordinates is used to derive the inverse dynamics. Simulation of the forward kinematics and inverse kinematics are conducted by the Robotics Toolbox, and the Matlab program is developed for the inverse dynamics.

    中文摘要.......................................................i Abstract................................................ii 致謝 ...................................................iii 目錄 ....................................................iv 圖目錄 ...................................................vi 表目錄 ...................................................ix 符號說明目錄................................................x 第一章 緒論.................................................1 研究動機....................................................1 1.1 機器人簡介..............................................1 1.1.1 義肢型機械手臂.........................................2 1.1.2 外骨架機器人...........................................2 1.2 外骨架機械手臂式機器人分類整理..............................4 1.3 應用及發展概況...........................................5 1.4 研究目的與章節架構.......................................12 1.4.1 研究目的.............................................12 1.4.2 章節架構.............................................12 第二章 外骨架機器人設計......................................14 2.1 人體骨骼運動學及復健運動.................................14 2.2 外骨架機器手臂設計......................................18 2.3 外骨架機器手臂之驅動硬體.................................21 2.3.1 三點組合............................................22 2.3.2 比例調壓閥...........................................23 2.3.3 PSoC 嵌入式晶片系統...................................25 第三章 人工肌肉氣壓缸之動態建模................................29 3.1 人工肌肉氣壓缸系統基本架構................................29 3.2 人工肌肉氣壓缸輸出力靜態數學模型...........................29 3.3 比例調壓閥質量流率數學模型................................30 3.4 人工肌肉氣壓缸壓力動態數學模型.............................31 3.5 人工肌肉氣壓缸負載動態數學模型.............................32 第四章 外骨架機器人之運動學與動態方程式.........................33 4.1 準座標系統與Lagrange方程式...............................34 4.2 運動學與動力學分析.......................................35 4.2.1 機械手臂機器人位置與速度分析............................35 4.2.2 順向運動學...........................................37 4.2.3 反向運動學...........................................40 4.3 外骨架機器人之動態方程式..................................44 4.3.1 機械手臂機器人動能.....................................44 4.3.2 機械手臂機器人位能.....................................47 4.3.3 虛功與反向動力學......................................47 第五章 復健姿勢模擬結果與討論.................................57 5.1 人工肌肉氣壓缸之動態模擬.................................57 5.2 復健姿勢模擬...........................................59 5.2.1 MATLAB - Robotics Toolbox..........................59 5.2.2 順向運動學模擬結果....................................62 5.2.3 反向運動學模擬結果....................................63 5.2.4 反向動力學模擬結果....................................66 第六章 結論與未來發展方向....................................70 參考文獻...................................................71

    [1]廖婉彣、林光華、謝好葳、莊覓玲、吳菁宜、林克忠,「機器輔助療法於中風復健之成效-隨機控制試驗之系統回顧」,FJPT, 35(2):126-138, 2010
    [2]Zunt, Dominik. “Who did actually invent the word "robot" and what does it mean? ” The Karel Čapek website. Retrieved 2007-09-11
    [3]德林股份有限公司,http://www.tlco.com.tw
    [4]Joel C. Perry, Jacob Rosen, “Upper-Limb Powered Exoskeleton Design”, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 4, pp.408-417, AUGUST 2007
    [5]Ruihua Wei, Mike Perez, Ben Shepard, Edward Koeneman, James Koeneman, and Jiping He, “RUPERT: An Exoskeleton Robot for Assisting Rehabilitation of Arm Functions”, Virtual Rehabilitation IEEE, Vancouver, BC, pp. 163 – 167, Aug. 2008
    [6]R. A. R. C. Gopura and Kazuo Kiguchi, “Mechanical Designs of Active Upper-Limb Exoskeleton Robots State-of-the-Art and Design Difficulties”, IEEE 11th International Conference on Rehabilitation Robotics, Japan, pp. 178-187, 2009
    [7]R. A. R. C. Gopura, Kazuo Kiguchi, D. S. V. Bandara, “A Brief Review on Upper Extremity Robotic Exoskeleton Systems”, 2011 6th International Conference on Industrial and Information Systems(ICIIS ), Kandy ,pp.346-351, Aug. 2011
    [8]S. Moubarak, M. T. Pham, R. Moreau and T. Redarce, “Gravity compensation of an upper extremity exoskeleton”, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, pp.4489-4493, August 31 - September 4, 2010
    [9]Thunyanoot Prasertsakul, Teerapong Sookjit, and Warakorn Charoensuk, “Design of Exoskeleton Arm For Enhancing Human Limb Movement”, Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, pp.2199-2203, December 7-11, 2011
    [10]G.R. Johnson and M.A. Buckley, “Development of a new Motorised Upper Limp Orthotic System (MULOS)”, In Proceedings of the Rehabilitation Engineering Society of North America. Pittsburgh, PA, pp. 399–401, 1997.
    [11]S.S. Marchese, M.A. Buckley, R. Valleggi and G.R. Johnson, “An optimized design of an active orthosis for the shouder—an iterative approach”, International Conference on RehabilitationRobotics, Stanford, CA, 1997.
    [12]A. Yardley, G. Parrini, D. Carus and J. Thorpe, “Development of an upper limb orthoticexercise system,”In International Conference on Rehabilitation Robotics, Stanford, CA, 1997.
    [13]C.G. Burgar, P.S. Lum, P.C. Shor and H.F. Machiel Van der Loos, “Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience,”Journal of Rehabilitation Research and Development, 37(6), p663 , 2000.
    [14]T. Nef, M. Mihelj, G. Colombo and R. Riener, “ARMin-Robot for Rehabilitation of the Upper Extremities”, in Proc. IEEE Int. Conf. on Robotics and Automat., Orlando, USA, pp. 3152-3157, 2006.
    [15]K. Nagai, et al., “Development of an 8 dof robotic orthosis for assisting human upper limb motion”, In Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, vol.4, pp. 3486-3491, 16-20 May1998.
    [16]Julius Klein, Steve Spencer, J. Allington, James E. Bobrow, and David J.
    Reinkensmeyer, “Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton”, IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 4, pp.710-715, AUGUST 2010
    [17]C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles”, in Proc. IEEE Robotics and Automation, vol.12(1), pp. 90–102. , 1996.
    [18]Hiroshi Kobayashi and Hirokazu Nozaki, “Development of Support System for Forward Tilting of the Upper Body”, Proceedings of 2008 IEEE International Conference on Mechatronics and Automation, Takamatsu , pp.352-356, Aug. 2008
    [19]Takamitsu Aida, Hirokazu Nozaki and Hiroshi Kobayashi, “Development of Muscle Suit and Application to Factory Laborers”, Mechatronics and Automation, 2009. ICMA 2009. International Conference on, Changchun, pp. 1027-1032, Aug. 2009
    [20]Hiroshi Kobayashi and Hirokazu Nozaki, “Development of Anteversion Posture Support System”, Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, Bangkok , pp. 682 – 686, Feb. 2009
    [21]Jun Ueda, Ding Ming, Vijaya Krishnamoorthy, Minoru Shinohara, and
    Tsukasa Ogasawara, “Individual Muscle Control Using an Exoskeleton Robot for Muscle Function Testing”, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 18, NO. 4 pp.339-350, AUGUST 2010
    [22]曾賢壎編著,「氣壓學」,高立圖書有限公司,民國94年2月
    [23]FESTO Proportional pressure regulators VPPM技術資料
    [24]Cypress, CY8C29x66 Final Data Sheet
    [25]志穎,「PSoC嵌入式系統晶片實做入門」,旗標出版有限公司,2009年09月
    [26]C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles”, in Proc. IEEE Robotics and Automation, vol.12(1), pp. 90–102. , 1996.
    [27]楊鋼、李寶仁、傅曉雲,「氣動人工肌肉系統動態特性研究」, 中國機械工程,第17卷第12期2006年6月下半月,pp. 1294-1298
    [28]Mocloy & Martin, “Control of Fluid Power”, 2nd, Ellis Horwood Limited, 1980.
    [29]楊鋼,“氣動人工肌肉位置伺服系統研究及其應用”,碩士論文,中國華中科技大學,2004
    [30]晉茂林著,「機器人學」,五南圖書出版股份有限公司,2009年2月
    [31]John J. Craig, “Introduction to Robotics - Mechanics and Control”, Pearson Prentice Hall, 2005
    [32]Tsai, L.W., “Robot Analysis”, John Wiley & Sons, Inc., 1999
    [33]Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, “Robot Modeling and Control”, John Wiley & Sons, Inc., 2005
    [34]C.T. Chen, “A Lagrangian formulation in terms of quasi-coordinates for the inverse dynamics of the general 6-6 Stewart platform manipulator”, JSME International J. Series C, vol. 46 (3) , pp.1084-1090, 2003
    [35]Quinn, R.D., “Equations on Motion for Structures in Terms of Quasi-Coordinates”, J. of Applied Mechanics, v01(52) , pp. 245-749, 1990
    [36]邱士豪,“機械臂之拋射運動路徑規劃與控制”,碩士論文,中華民國九十三年六月
    [37]R.C. Hibbeler, “Engineering Mechanics - Dynamics”, 9th edition,張柳春、許顯榮、黃世疇譯著,「動力學」,臺灣培生教育出版股份有限公司,歐亞書局有限公司, 6月, 2002
    [38]李榮仁,“以準座標規劃史都華平台動態模擬”,碩士論文,中華民國九十一年六月
    [39]F. H. Martini, M. J. Timmons, and R. B. Tallitsch, “Human Anatomy”, Prentice Hall, Pearson Education, Inc, 2003, ch. 8.
    [40]J.Biomech., “On the Biomechanics of the Shoulder Complex” , A. E. Engin, vol. 13, pp.575-590, 1980.
    [41]Mohammad H. Rahman, Maarouf Saad, Jean P. Kenné, and Philippe S. Archambault, “Modeling and Control of a 7DOF Exoskeleton Robot for Arm Movements”, IEEE International Conference on Robotics and Biomimetics, Guilin , pp. 245-250, December 19 -23, 2009
    [42]R. A. R. C. Gopura and Kazuo Kiguchi, “Mechanical Designs of Active Upper-Limb Exoskeleton Robots State-of-the-Art and Design Difficulties”, IEEE 11th International Conference on Rehabilitation Robotics, Japan, pp. 178-187, 2009.
    [43]信義醫療財團法人高雄基督教醫院復健中心,照護資訊-基本復健運動,http://www.kch.org.tw
    [44]P.I. Corke, “A Robotics Toolbox for MATLAB”, IEEE Robotics and Automation Magazine, vol.3, no.1, pp. 24-32, mar 1996
    [45]E. Papadopoulos and G. Patsianis, “Design of an Exoskeleton Mechanism for the Shoulder Joint”, in Proc. Twelfth World Congr. in Mechanism and Machine Sci., Besancon, France, pp. 1-6, 2007
    [46]J. C. Perry and J. Rosen, “Upper-Limb Powered Exoskeleton,” Int. J. Humanoid Robotics, vol. 4, no. 3, pp. 529–548, 2007
    [47]J. Rosen, N. Brand, M. B. Fuchs, and M. Arcan, “A Myosignal-Based Powered Exoskeleton System,” IEEE Trans. on Syst. Man Cybern. A, vol. 31, no. 3, pp. 210-222, 2001
    [48]J. C. Perry, J. Rosen, and S. Burns “Upper-Limb Powered Exoskeleton Design,” IEEE/ASME Trans. on Mechatronics, vol. 12, no. 4, pp. 408-417, 2007
    [49]H. Kawasaki, S. Ito, Y. Ishigure, and Y. Nishimoto, T. Aoki, T. Mouri, H. Sakaeda and M. Abe, “Development of a Hand Motion Assist Robot for Rehabilitation Therapy by Patient Self-Motion Control,” in Proc. IEEE Int. Conf. on Rehabil. Robotics, Noordwijk, The Netherlands, pp. 234-240, 2007
    [50]A. Gupta and M. K. O’Malley, “Design of a haptic arm exoskeleton for training and rehabilitation,” IEEE/ASME Trans. Mechatronics, vol. 11, pp. 280–289, 2006
    [51]T. Nef, M. Mihelj, G. Colombo, and R. Riener, “ARMin-Robot for Rehabilitation of the Upper Extremities,” in Proc. IEEE Int. Conf. on Robotics and Automat., Orlando, USA, pp. 3152-3157, 2006
    [52]M. Mihelj, T. Nef, and R. Riener, “ARMin-Toward a six DOF Upper Limb Rehabilitation Robot,” in Proc. IEEE/RAS-EMBS Int. Conf. on Biomed. Robotics and Biomech., Pisa, Italy, pp. 1154-1159, 2006
    [53]T. Nef and R. Riener, “ARMin-Design of a Novel Arm Rehabilitation Robot,” in Proc. Int. Conf. on Rehabil. Robotics, Chicago, USA, pp. 57-60, 2005
    [54]M. Mihelj, T. Nef and R. Riener, “ARMin II-7 DOF Rehabilitation Robot: Mechanism and Kinematics,” in Proc. IEEE Int. Conf. on Robotics and Automat., Roma, Italy, 2007, pp. 4120-4125
    [55]G. R. Johnson, D. A. Carus, G. Parrini, S. Scattareggia Marchese, and R. Valeggi, “The Design of a Five-Degree-of-Freedom Powered Orthosis for the Upper Limb,” Proc. of the Institution of Mechanical Engineers Part H-J. Eng. in Medicine, vol. 215, no. 3, pp. 276-284, 2001
    [56]C. Carignan, M. Liszka, and S. Roderick, “Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation,” in Proc. Int. Conf. on Advanced Robotics, Seattle, USA, pp. 524-531, 2005
    [57]S. J. Ball, I. E. Brown, and S. H. Scott, “A planar 3DOF robotic exoskeleton for rehabilitation and assessment,”, in Proc. IEEE Int. Conf. on Eng. in Medicine and Biology Society, Lyon, France, pp 4024-4027, 2007
    [58]S. J. Ball, I. E. Brown, and S. H. Scott, “MEDARM: A rehabilitation robot with 5DOF at the shoulder complex,” in Proc. IEEE/ASME Int. Conf. on Advanced Intell. Mechatronics, Zurich, Switzerland, pp. 1-6, 2007
    [59]E. Rocon, A. F. Ruiz, J. L. Pons, J. M. Belda-Lois, and J. J. Sanchez-Lacuesta, “Rehabilitation Robotics: A Wearable Exoskeleton for Tremor Assessment and Suppression,” in Proc. Int. Conf. on Robotics and Automat., Barcelona, Spain, pp. 241-246, 2005
    [60]A. Frisoli, L. Borelli, A. Montagner, S. Marcheschi, C. Procopio, F. Salsedo, M. Bergamasco, M. C. Carboncini, M. Tolaini, and B. Rossi,“Arm rehabilitation with a robotic exoskeleleton in Virtual Reality,” in Proc. of Int. Conf. on Rehabilitation Robotics, Noordwijk, The Netherlands, pp. 631-642, 2007
    [61]S. Moubarak, M. T. Pham, T. Pajdla, and T. Redarce, “Design and Modeling of an Upper Extremity Exoskeleton”, in Proc. of Int. Congress of the IUPESM: Medical Physics and Biomedical Engineering, Münich : Germany, pp. 476-479, 2009
    [62]B. C. Tsai, W. W. Wang, L. C. Hsu, L. C. Fu, and J. S. Lai, “An Articulated Rehabilitation Robot for Upper Limb Physiotherapy and Training” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1470-1475, 2010
    [63]M. Ngai, “Design of a Forearm Exoskeleton for Supination/Pronation Assistance in Daily Activities”, McMaster University, Hamilton, Ontario, Canada, Project Report submitted in partial fulfillment of the degree of Bachelor of Engineering, 2010
    [64]W. Yu and J. Rosen “A Novel Linear PID Controller for an Upper Limb Exoskeleton”, in Proc. of IEEE Int. Conf. on Decision and Control, Atlanta, GA, pp. 3548-3553, 2010
    [65]P. Garrec, “Design of an Anthropomorphic Upper Limb Exoskeleton Actuated by Ball-Screws and Cables”, Scientific Bulletin, Series D, Vol. 72, Issue. 2, pp. 23-34, 2010
    [66]H. Kobayashi and K. Hiramatsu, “Development of Muscle Suit for Upper Limb,” in Proc. IEEE Int. Conf. on Robotics and Automat., vol. 3, New Orleans, USA, pp. 2480-2485, 2004
    [67]T. G. Sugar, J. He, E. J. Koeneman, J. B. Koeneman, R. Herman, H. Huang, R. S. Schultz, D. E. Herring, J. Wanberg, S. Balasubramanian, P. Swenson, and J. A. Ward, “Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, Issue 3, pp. 336-346, 2007
    [68]N. G. Tsagarakis and D. C. Caldwell, “Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training,” J. Autonomous Robots, vol. 15, pp. 21-33, 2003
    [69]Z. Jiafan, F. Hailun, D. Yiming, Z. Yu, Y. Canjun, and C. Ying “Novel 6DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation” Chinese Journal of Mechanical Engineering, Vol. 22a, No. 5, pp. 1-10, 2009
    [70]M. Mistry, P. Mohajerian, and S. Schaal, “An Exoskeleton Robot for Human Arm Movement Study,” in Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Syst., Alberto, Canada, pp. 4071- 4076, 2005
    [71]S. Imai, Y. Saito, T. Tajima, IC Ohnishi, Hiki, Saitma, “Development of hydraulic bilateral-servo actuator for powered orthosis,” Systems, Man, and Cybernetics, 2000 IEEE International Conference on (Volume:2 ), Nashville, TN, pp. 1237-1242, 2000

    下載圖示
    QR CODE