簡易檢索 / 詳目顯示

研究生: 陳炫江
Hsuan-Chiang Chen
論文名稱: 以tau 聚集為目標的阿茲海默氏症治療策略
Therapeutic strategies targeting tau aggregation for Alzheimer's disease
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 53
中文關鍵詞: 阿茲海默氏症神經退化性疾病tau 聚集吲哚基喹啉化合物GSK-3β抑制劑類似物神經突觸生長
英文關鍵詞: Alzheimer's disease, neurodegenerative disorder, tau aggregation, indolylquinoline, GSK-3 inhibitor-like compounds, neurite outgrowth
論文種類: 學術論文
相關次數: 點閱:166下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默氏症是一種漸近性的神經退化性疾病,主要病理特徵包
    括細胞外間質的Aβ 胜肽堆積,及細胞內高度磷酸化tau 形成的神經
    纖維糾結。由於tau 聚集與阿茲海默氏症進程具相關性,因此透過抑
    制或消除tau 聚集或可保護受影響之神經細胞。本研究構築tau 蛋白
    微管結合重複區域(tauRD)之野生型(K18)及第280 位置賴胺酸缺失的
    促tau 聚集突變型(ΔK280)與DsRed 紅螢光蛋白融合之tauRD-DsRed
    基因,來建立誘導表現tauRD-DsRed 之Tet-On 293 與Tet-On SH-SY5Y
    細胞,作為藥物篩檢平台,來篩檢可抑制tauRD 聚集的抑制物,並對
    這些具聚集抑制性的化合物或中草藥、植物萃取物等,檢測其神經保
    護機制。在Tet-On 293 細胞誘導tauRD-DsRed 蛋白表現後,ΔK280
    突變型細胞螢光亮度較野生型細胞顯著減少。以剛果紅(正控制組)處
    理細胞後,突變型細胞的紅螢光亮度較野生型者更能有效提升。對於
    293 促tau 聚集突變型細胞,在細胞數無顯著影響下, 前處理
    NC009-1、-2、-3、-6、-7 (吲哚基喹啉化合物)、NTNU-003、-008 (GSK-3β抑制劑類似物)、NH021、NTNU-043、-057、-059、-224、NTNU-309、
    -313、-319、-331、-379 (中草藥或植物萃取液)等皆可顯著提升DsRed
    紅螢光亮度。以維他命A 酸誘導ΔK280 促tau 聚集突變型SH-SY5Y
    細胞神經分化後,螢光顯微影像分析顯示神經突觸生長性狀(包含總
    生長及突起數、分支數)較野生型K18 細胞顯著下降。以NC009-1、
    -7 及NTNU-008 前處理突變型SH-SY5Y 細胞後,可顯著提升神經突
    觸總生長性狀,並可提升HSP27 蛋白(NC009-1、-7)或GRP 78、HSP27
    蛋白(NTNU-008)的表現。

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with accumulation of extracellular amyloid-β and intracellular tau-associated neurofibrillary tangles (NFTs). The aggregation of tau in AD correlates with the clinical progression of the disease and inhibition
    or reversal of tau aggregation may protect the affected neurons. In this study wild type (K18) and pro-aggregation mutant (ΔK280) of repeat domain of tau (tauRD) was fused with DsRed (tauRD-DsRed fusion gene) and used to generate Tet-On 293 and SH-SY5Y cell clones as drug screening platforms. Inhibitors that retard or block ΔK280 tau aggregation can be distinguished by increasing fluorescence on Tet-On 293 cells. For those compounds/herbs with putative aggregate inhibitors, mechanisms of neuroprotection were determined. Upon induction with
    doxycycline, red fluorescence in ΔK280 tauRD-DsRed 293 cells was significantly reduced compared to that in wild type cells. As a positive control, congo red increased red fluorescence more effectively in ΔK280 tauRD-DsRed 293 cells than in wild type cells. Without significantly
    reducing cell numbers, pretreatment of NC009-1, -2, -3, -6, -7 (indolylquinoline compounds), NTNU-003, -008 (GSK-3 inhibitor-like compounds), NH021, NTNU-043, -057, -059, -224, -309, -313, -319, -331, -379 (herbal extracts) resulted in significant increased fluorescence on ΔK280 tauRD-DsRed cells. For SH-SY5Y cell clones, retinoic acid
    treatment generated cells resemblance to adult neurons. Fluorescent microscopy examination revealed that neurite outgrowth (including total outgrowth, process and branch) was significantly reduced in ΔK280 tauRD-DsRed cells compared to that in wild type cells. NC009-1, -7 and
    NTNU-008 significantly increased neurite total outgrowth in ΔK280 SH-SY5Y cells, accompanying with enhanced HSP27 (NC009-1 and -7) or GRP78 and HSP27 (NTNU-008) expression.

    目錄 I 中文摘要 IV Abstract V 圖表目錄 VI 壹、緒 論 ........................................................................................... 1 一、阿茲海默氏症 ............................................................................. 1 二、神經病理特徵及生化學 ............................................................. 2 三、病因學 ......................................................................................... 4 四、AD 治療策略2 ............................................................................................ 6 貳、研究目的 ............................................................................................ 8 參、研究材料與方法 ............................................................................... 9 一、pcDNA5/FRT/TO/tauRD-DsRed 重組質體 ............................... 9 二、細菌電穿孔(electroporation)轉型作用(transformation) ............ 9 三、質體DNA 的小量製備 ............................................................ 10 四、質體DNA 的大量製備及純化 ................................................ 11 五、細胞株繼代培養 ....................................................................... 12 六、基因轉染(transfection) ............................................................. 13 七、即時聚合酶鏈鎖反應分析細胞誘導基因表現 ....................... 14 II 八、利用西方墨點法分析細胞誘導蛋白表現 ............................... 16 九、高通量影像系統分析ΔK280 tauRD-DsRed 293 細胞試驗 ..... 18 十、高通量影像系統分析ΔK280tauRD-DsRed SH-SY5Y 細胞試驗 ........................................................................................................... 19 肆、結果 .................................................................................................. 20 一、pcDNA5/FRT/TO/tauRD-DsRed 重組質體的確認 ................... 20 二、Doxycycline 誘導表現tauRD-DsRed 293 細胞株之建立 ........ 20 三、tauRD-DsRed SH-SY5Y 細胞誘導表現 .................................... 21 四、促tau 聚集突變型ΔK280 tauRD -DsRed 293 細胞之中草藥及 植物萃取物篩選 ............................................................................... 22 五、促tau 聚集突變型ΔK280 tauRD -DsRed 293 細胞之吲哚基喹 啉衍生物篩選 ................................................................................... 23 六、促tau 聚集突變型ΔK280 tauRD -DsRed 293 細胞之GSK-3β 抑制劑類似物篩選 ........................................................................... 24 七、促tau 聚集突變型ΔK280 tauRD -DsRed SH-SY5Y 細胞之GSK 先導藥物篩選 ................................................................................... 25 八、先導藥物處理促tau 聚集突變型ΔK280 tauRD-DsRed SH-SY5Y 細胞之蛋白表現分析 ..................................................... 26 伍、討論 .................................................................................................. 28 III 一、tauRD-DsRed 293 細胞誘導表現 .............................................. 28 二、小分子化合物及植物萃取物對蛋白錯誤折疊作用 ............... 28 三、Chaperones 對防止蛋白錯誤折疊作用 ................................... 30 四、先導藥物對ΔK280 tauRD SH-SY5Y 作用 .............................. 31 伍、參考文獻 .......................................................................................... 33 陸、附錄圖表 .......................................................................................... 39

    Abisambra, J.F., Jinwal, U.K., Jones, J.R., Blair, L.J., Koren, J., 3rd, and Dickey, C.A. (2011). Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 9, 623-631.
    Abisambra, J.F., Jinwal, U.K., Suntharalingam, A., Arulselvam, K., Brady, S., Cockman, M., Jin, Y., Zhang, B., and Dickey, C.A. (2012). DnaJA1 antagonizes constitutive Hsp70-mediated stabilization of tau. J Mol Biol 421, 653-661.
    Avila, M.F., Cabezas, R., Torrente, D., Gonzalez, J., Morales, L., Alvarez, L., Capani, F., and Barreto, G.E. (2013). Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 37, 521-532.
    Berchtold, N.C., and Cotman, C.W. (1998). Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol Aging 19, 173-189.
    Bijur, G.N., and Jope, R.S. (2000). Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 75, 2401-2408.
    Carter, D.B., and Chou, K.C. (1998). A model for structure-dependent binding of Congo red to Alzheimer beta-amyloid fibrils. Neurobiol Aging 19, 37-40.
    Cohen, T., Frydman-Marom, A., Rechter, M., and Gazit, E. (2006). Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry 45, 4727-4735.
    Dickey, C.A., Dunmore, J., Lu, B., Wang, J.W., Lee, W.C., Kamal, A., Burrows, F., Eckman, C., Hutton, M., and Petrucelli, L. (2006). HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20, 753-755.
    Dickey, C.A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R.M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C.B., et al. (2007). The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117, 648-658.
    Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Gouras, G.K., Greengard, P., and Xu, H. (2003). Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100, 721-726.
    Drewes, G., Mandelkow, E.M., Baumann, K., Goris, J., Merlevede, W., and Mandelkow, E. (1993). Dephosphorylation of tau protein and Alzheimer paired helical filaments by calcineurin and phosphatase-2A. FEBS Lett 336, 425-432.
    Fang, X.K., Gao, J., and Zhu, D.N. (2008). Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82, 615-622.
    Forlenza, O.V., de Paula, V.J., Machado-Vieira, R., Diniz, B.S., and Gattaz, W.F. (2012). Does lithium prevent Alzheimer's disease? Drugs Aging 29, 335-342.
    Forsyth, E., and Ritzline, P.D. (1998). An overview of the etiology, diagnosis, and treatment of Alzheimer disease. Phys Ther 78, 1325-1331.
    Fratiglioni, L., Viitanen, M., von Strauss, E., Tontodonati, V., Herlitz, A., and Winblad, B. (1997). Very old women at highest risk of dementia and Alzheimer's disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 48, 132-138.
    Fu, M., Deng, D., Huang, R., Zhang, N., Su, Z., and Qiu, S.X. (2013). A new flavanocoumarin from the root of Flemingia philippinensis. Nat Prod Res 27, 1237-1241.
    Glenner, G.G., and Wong, C.W. (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120, 885-890.
    Gorbenko, G.P., and Kinnunen, P.K. (2006). The role of lipid-protein interactions in amyloid-type protein fibril formation. Chem Phys Lipids 141, 72-82.
    Hasegawa, M., Smith, M.J., and Goedert, M. (1998). Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437, 207-210.
    Hong-Qi, Y., Zhi-Kun, S., and Sheng-Di, C. (2012). Current advances in the treatment of Alzheimer's disease: focused on considerations targeting Abeta and tau. Transl Neurodegener 1, 21.
    Isik, A.T. (2010). Late onset Alzheimer's disease in older people. Clin Interv Aging 5, 307-311.
    Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. (1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45-53.
    Khlistunova, I., Biernat, J., Wang, Y., Pickhardt, M., von Bergen, M., Gazova, Z., Mandelkow, E., and Mandelkow, E.M. (2006). Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 281, 1205-1214.
    Lee, V.M., Balin, B.J., Otvos, L., Jr., and Trojanowski, J.Q. (1991). A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251, 675-678.
    Leroy, K., Bretteville, A., Schindowski, K., Gilissen, E., Authelet, M., De Decker, R., Yilmaz, Z., Buee, L., and Brion, J.P. (2007). Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am J Pathol 171, 976-992.
    Li, X., Kumar, Y., Zempel, H., Mandelkow, E.M., Biernat, J., and Mandelkow, E. (2011). Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30, 4825-4837.
    Martin, C., Solis, L., Concha, M.I., and Otth, C. (2011). [Herpes simplex virus type 1 as risk factor associated to Alzheimer disease]. Rev Med Chil 139, 779-786.
    Momeni, P., Pittman, A., Lashley, T., Vandrovcova, J., Malzer, E., Luk, C., Hulette, C., Lees, A., Revesz, T., Hardy, J., and de Silva, R. (2009). Clinical and pathological features of an Alzheimer's disease patient with the MAPT Delta K280 mutation. Neurobiol Aging 30, 388-393.
    Morshedi, D., Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Ahmadian, S., and Nemat-Gorgani, M. (2007). Inhibition of amyloid fibrillation of lysozyme by indole derivatives--possible mechanism of action. FEBS J 274, 6415-6425.
    Navarrete, L.P., Guzman, L., San Martin, A., Astudillo-Saavedra, L., and Maccioni, R.B. (2012). Molecules of the quinoline family block tau self-aggregation: implications toward a therapeutic approach for Alzheimer's disease. J Alzheimers Dis 29, 79-88.
    Povova, J., Ambroz, P., Bar, M., Pavukova, V., Sery, O., Tomaskova, H., and Janout, V. (2012). Epidemiological of and risk factors for Alzheimer's disease: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156, 108-114.
    Rubio-Perez, J.M., and Morillas-Ruiz, J.M. (2012). A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012, 756357.
    Sadqi, M., Hernandez, F., Pan, U., Perez, M., Schaeberle, M.D., Avila, J., and Munoz, V. (2002). Alpha-helix structure in Alzheimer's disease aggregates of tau-protein. Biochemistry 41, 7150-7155.
    Sahara, N., Maeda, S., Yoshiike, Y., Mizoroki, T., Yamashita, S., Murayama, M., Park, J.M., Saito, Y., Murayama, S., and Takashima, A. (2007). Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85, 3098-3108.
    Sarkar, M., Kuret, J., and Lee, G. (2008). Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone. J Neurosci Res 86, 2763-2773.
    Siddique, H., Hynan, L.S., and Weiner, M.F. (2009). Effect of a serotonin reuptake inhibitor on irritability, apathy, and psychotic symptoms in patients with Alzheimer's disease. J Clin Psychiatry 70, 915-918.
    Sisodia, S.S., and St George-Hyslop, P.H. (2002). gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat Rev Neurosci 3, 281-290.
    Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4, 49-60.
    Spillantini, M.G., and Goedert, M. (1998). Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21, 428-433.
    Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., Goedert, M., and Hasegawa, M. (2005). Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280, 7614-7623.
    Tjernberg, L.O., Callaway, D.J., Tjernberg, A., Hahne, S., Lilliehook, C., Terenius, L., Thyberg, J., and Nordstedt, C. (1999). A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 274, 12619-12625.
    von Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E.M., and Mandelkow, E. (2001). Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem 276, 48165-48174.
    von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E.M., and Mandelkow, E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 97, 5129-5134.
    Wenk, G.L. (2003). Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry 64 Suppl 9, 7-10.
    Wenk, G.L. (2006). Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry 67 Suppl 3, 3-7; quiz 23.
    Wolfe, M.S. (2009). Tau mutations in neurodegenerative diseases. J Biol Chem 284, 6021-6025.
    Yoshida, J., Seino, H., Ito, Y., Nakano, T., Satoh, T., Ogane, Y., Suwa, S., Koshino, H., and Kimura, K. (2013). Inhibition of Glycogen Synthase Kinase-3beta by Falcarindiol Isolated from Japanese Parsley (Oenanthe javanica). J Agric Food Chem 61, 7515-7521.
    Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.M., Iwata, N., Saido, T.C., Maeda, J., Suhara, T., Trojanowski, J.Q., and Lee, V.M. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337-351.
    黃鉦翔 (2013). 以amyloid-beta聚集為目標的阿茲海默氏症治療策略. 國立臺灣師範大學生命科學系碩士論文.

    下載圖示
    QR CODE