簡易檢索 / 詳目顯示

研究生: 陳冠任
kuan jen Chen
論文名稱: 新世代場效電晶體及薄膜電晶體
Study of New Generation Field-Effect Transistor and Thin-Film Transistor Technology
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 高介電層次臨界電壓擺幅金屬閘極
英文關鍵詞: high-k, S.S., metal gate
論文種類: 學術論文
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今元件閘極線寬越做越小,所需電流大小要求約來越高,控能力也相對增加,為了滿足這些需求,現今二氧化矽當作閘極氧化層半導體,已不符現今半導體界的使用,因為閘極氧化層屬用傳統的二氧化矽絕緣層厚度將需要縮小到約奈米等級,要維持在電性操作時之等效氧化層厚度 不變,在文獻中,以研究取代二氧化矽的新材料,在閘極厚度減少,但是還有電容值可以存取,不會因為閘極太薄,造成閘極漏電的機制與避免穿隧效應的產生。所以使用高介電常數 ( high-k ) 的材料及使用金屬閘極來取代二氧化矽是必需的。於是使用高介電常數材料作為絕緣層,同時閘極絕緣層實際厚度與電性等效厚度便成現今所需解決的問題;另外使用矽鍺材料改善元件特性。對於奈米尺寸元件,鍺具有較大遷移率增加,在不同的通道載子傳輸方向及基板方位下,了解遷移率的理論。
    本次實驗結果可知,在透過製程及退火條件之下,均可得到不錯的HfSiOx薄膜與金屬TiN品質及其電性表現,尤其在微縮等效氧化層厚度及抑制漏電流方面的優點。

    Today, as MOSFET’s gate length getting small, to increase driving current and enhance gate control capability. in order to satisfy these requirements , It isn't comform to the semiconductor nowadays that SiO2 uses for gate oxide. Because the thickness of the insulator SiO2 will need to be reduced to small nanometer length, while keeping the EOT (equivalent oxide thickness) to maintain the characteristics of the devices. In the paper, in nanometer technology node, however, the electrons of the gate can flow through gate oxide into drain by tunneling in this place , and produce large leakage current . Using a new material with a dielectric constant greater than that of SiO2 to replace SiO2 film as gate dielectrics is an indispensable task.. Using insulators with high dielectric constant is one of the attractive and popular method to research the problem. Besides, SiGe materials has an important technique for improving the device performance other than conventional scaling method. Germanium can provide large mobility enhancement for CMOS. It will be of great importance to know the theoretical limit of mobility under various channel direction, and substrate orientation for device.
    In this research, we use the anneal process and fabrication that get good quality of HfSiOx film and metal TiN. There are suppression of leakage current and reduce of oxide layer for the device.

    目錄 Publication List………………………………………………………Ⅰ 中文摘要………………………………………………………………Ⅱ 英文摘要………………………………………………………………Ⅲ 誌謝……………………………………………………………………Ⅳ 目錄……………………………………………………………………Ⅴ 第一章 緒論 1-1 90 nm後CMOS製程變革及高效能薄膜電晶體發展……1 1-2 矽鍺材料及高介電材料…………………………………3 第二章 矽鍺基場效電晶體(FET) 2-1 簡介 ……………………………………………………5 2-2 二氧化矽(SiO2)之矽鍺場效電晶體(FET)製作………6 2-3 P型與N型場效電晶體(FET)電性量測與分析 ………7 2-4 超薄矽氧化鉿(HfSiOX)及金屬閘極之矽鍺場效電晶體 製作 …………………………………………………………11 2-5 超薄矽氧化鉿(HfSiOX)及金屬閘極之矽鍺場效電晶體電性量測分析 ………………………………………………13 第三章 多晶矽結晶之製作 3-1 簡介 ……………………………………………………14 3-2 爐管式(Furnace)固相結晶法(Solid-Phase Crystallization ,SPC) ………………………………………16 3-3 快速熱製程(Rapid thermal processing,RTP)之固相結晶法處理 ………………………………………………………18 3-4 雷射結晶法(ELC:Excimer Laser Crystallization)……21 第四章 高介電常數矽氧化鉿(HfSiOX)與金屬閘極之多晶矽薄膜電晶體 4-1 簡介………………………………………………………31 4-2 高介電常數矽氧化鉿(HfSiOX)與金屬閘極之多晶矽薄膜電晶體製作……………………………………………………32 4-3 高效能薄膜電晶體之電性測 …………………………36 4-3 結果與討論………………………………………………52 第五章 5-1 結論………………………………………………………53 5-2 未來研究方向 …………………………………………54 參考文獻 ………………………………………………………………58

    [1] S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Ma Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, Nguyen Phi; S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,"IEEE Transactions on Electron Devices, Vol.51, no. 11, p.1790, 2004.
    [2] Ryuji Ohba and Tomohisa Mizuno, “Nonstationary Electron/Hole Transport in Sub-0.1um MOS Devices:Correlation with Mobility and Low-Power CMOS Application,"IEEE Transactions on Electron Devices, Vol.41, no. 2, p.338, 2001.
    [3] D.A. Antoniadis, “MOSFET Scalability Limits and New Frontier Devices ,"Symposium on VLSI Technology Digest of Technical Papers, p.2, 2002.
    [4] Zhibin Xiong, Haitao Liu, and ChunxiangZhu, “Characteristics of High-k Spacer Offset-Gated Polysilicon TFTs,” IEEE Transactions on Electron Devices, Vol. 51, no. 8, 2004.
    [5] J. A. Moriarty and S. Krishnamurthy, "Theory of silicon superlattices : Electronic structure and enhanced mobility," Journal Applied Physics. Vol. 54, p. 1892, 1983.
    [6] G. C. Osboum, "Strained-layer superlattices: A brief review," IEEE Journal of Quantum Electron. Vol. 22, p. 1677, 1986.
    [7] R. People and J. C. Bean, "Band alignments of coherently strained
    GexSil-x /Si heterostructures on <001> GeySi1-y substrates," Appl. Phys. Lett., Vol. 48, p. 538, 1986.
    [8] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazak, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Transactions on Electron Devices , Vol 40, p.1876 ,1994.
    [9] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Transactions on Electron Devices , Vol.43, p.561, 1996.
    [10] G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Transactions on Electron Devices, Vol.43, p.561, 1996.
    [11] C. F. Cheng, T. C. Leung, M. C. Poon, Senior Member, IEEE, and Mansun Chan, Senior Member, IEEE, “Large-Grain Polysilicon Crystallization Enhancement Using Pulsed RTA,” IEEE Transactions on Electron Devices , Vol.25, p.8, 2004.
    [12] M. A. Crowder, A. T. Voutsas, S.R. Droes, M. Moriguchi, Y. Mitani, “Sequential lateral solidification processing for polycrystalline Si TFTs
    ,” IEEE Transactions on Electron Devices , Vol.51, p. 560, 2004.
    [13] H. S. Shin, S. H. Jung, W. J. Nam, W. K. Lee, H. J. Lee and M. K. Han, “Novel L-Shaped Dual-Gate Structure of Polycrystalline Silicon Thin-Film Transistors for the Reduction of the Kink Current in Sequential Lateral Solidification or Continuous Wave Laser Method,” Japanese Journal of Applied Physics, vol. 45, No. 5B, 2006, p. 4378, 2006.
    [14] J. Y. Park, H. H. Park, K. Y. Lee and H. K. Chung, “Design of Sequential Lateral Solidification Crystallization Method for Low Temperature Poly-Si Thin Film Transistors,” Japanese Journal of Applied Physics, Vol. 43, No. 4A, 2004, p. 1280, 2004.
    [15] J.-H. Park, Munehiro Tada, C.-H., Duygu Kuzum, Pawan Kapur, H.-Y. Yu, H-.S. Philip Wong, and Krishna C. Saraswat , “Low Temperature (≤ 380ºC) and High Performance Ge CMOS Technology with Novel Source/Drain by Metal-Induced Dopants Activation and High-K/Metal Gate Stack for Monolithic 3D Integration,” Dept. of Electrical Engineering, CIS, Stanford University, Stanford, CA, 94305, USA.
    [16] Y. H. Son, J. W. Lee, Pilkyu Kang, M. G. Kang, J. B. Kim, and S. H. Lee,“Laser-induced Epitaxial Growth (LEG) Technology for High Density 3-D Stacked Memory with High Productivity,” Symposium on VLSI Technology Digest of Technical Papers, Dig. 80, 2007.
    [17] Y. Kim, C. Lim, C.D. Young, K. Matthews, J. Barnett, B. Foran, A. Agarwal, G. A. Brown, G. Bersuker, and P. Zeitzoff, “Conventional poly-Si gate MOS-transistors with a novel, ultra-thin Hf-oxide layer,” Symposium on VLSI Technology Digest of Technical Papers, Dig. 167, 2003.
    [18] C.-P. Lin, B.-Y. Tsui, M.-J. Yang, R.-H. Huang, and C. H. Chien, “High-performance poly-silicon TFTs using HfO2 gate dielectric,” IEEE Transactions on, Electron Devices, Vol.27, no. 5, p.360 ~ 363, 2006.
    [19] M.-J. Yang, C.-H. Chien, Associate Member, IEEE, Y.-H. Lu, G.-L. Luo, S.-C. Chiu, and C.-C. Lou,“High-Performance and Low Temperature Compatible p-Channel Polycrystalline-Silicon TFTs Using Hafnium-Silicate Gate Dielectric,” IEEE Transactions on Electron Devices, Vol.28, no. 10, 2007.
    [20] I. W. Wu, T. Y. Huang, W. B. Jackson, A.G. Lewis, and A.Chiang, “ Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Devices Letters, Vol.12, p.181, 1991.

    無法下載圖示 本全文未授權公開
    QR CODE