簡易檢索 / 詳目顯示

研究生: 曾俊峰
Chun Feng Tseng
論文名稱: 聯吡啶釕錯合物的光物理性質研究
Photopysical Properties Of Ruthenium(Ⅱ) Polypyridyl Complexes
指導教授: 張ㄧ知
Chang, I-Jy
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 釕錯合物
英文關鍵詞: Ruthenium(Ⅱ) Polypyridyl Complexes
論文種類: 學術論文
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中合成出不同官能基的聯吡啶和含酸基的聯吡啶與釕金屬結合為錯合物,主要在研究此類具有酸基錯合物的酸解離平衡常數。
    並分析其基態與激發態的電子密度分佈,以及影響電子分佈的因素。
    由錯合物在基態時 UV-vis 吸收光譜上 MLCT band 的吸收度對pH滴定曲線的變化,可求得基態的解離平衡常數,此即pKa;而以錯合物 Emission 光譜的強度對pH滴定曲線的變化,可得到其反折點,pKa*’,再測得錯合物在質子化與去質子化兩者的生命期加以校正,即可得到激發態的解離平衡常數,pKa*。錯合物的酸解離平衡常數在激發態與基態的差值 ΔpKa (pKa*-pKa) 越大代表錯合物在激發態時是比基態更具鹼性,也就是說,錯合物在激發態有較多的電子密度分布在含有酸基的聯吡啶上。越小代表錯合物在激發態有較少的電子密度分布在含有酸基的聯吡啶上。
    實驗結果ΔpKa為[Ru(tmbpy)2(tmcbpy)] 2+, 1.77; [Ru(dmbpy)2(tmcbpy)] 2+, 0.79; [Ru(phen)2(tmcbpy)] 2+, 0.64; [Ru(dabpy)2(tmcbpy)] 2+, 0.62; [Ru(dpphen)2(tmcbpy)] 2+, -0.84。結果以[Ru(tmbpy)2(tmcbpy)] 2+的電子由釕金屬轉移到含酸基聯吡啶的效益最好。以[Ru(dpphen)2(tmcbpy)] 2+的電子由釕金屬轉移到含酸基聯吡啶的效益最差。

    Ruthenium(II) tris(dipyridyl) complexes have been synthesized. By varying the electron-withdrawing and electron-donating abilities on each bipyridyl ligand, we have made six complexes that contain 4-carboxyl-3,3’4,’-trimethy,2’-bipyridine. These complexes are [Ru(tmbpy)2(tmcbpy)] 2+, [Ru(dmbpy)2(tmcbpy)] 2+, [Ru(phen)2(tmcbpy)] 2+, [Ru(dabpy)2(tmcbpy)] 2+, [Ru(dpphen)2(tmcbpy)] 2+, [Ru(phenNO2)2(tmcbpy)] 2+.
    The ground-state acid dissociation constant (pKa) were obtained from the titration curve of absorption changes. The excited-state acid dissociation constant (pKa*) were obtained from the luminescence titration curve and lifetime calibration. A positive ΔpKa (ΔpKa = pKa* - pKa) indicates the electron density of the bipyridine that contains the carboxyl group has a higher electron density in the excited state than the ground state. A negative ΔpKa indicates the carboxyl containing bipyridine has less electron density in the excited state. From the acid dissociation constant studies, the electron density in the excited state of Ruthenium(II) tris(dipyridyl) complexes can be qualitatively mapped.
    The experiment data forΔpKa are 1.77, 0.79, 0.64, 0.62, and -0.84 for [Ru(tmbpy)2(tmcbpy)] 2+, [Ru(dmbpy)2(tmcbpy)] 2+,[Ru(phen)2(tmcbpy)] 2+, [Ru(dabpy)2(tmcbpy)] 2+, [Ru(dpphen)2(tmcbpy)] 2+,respectively. The results indicate that if it is desired to have higher electron density in the excited state on the carboxyl containing bipyridine, [Ru(tmbpy)2(tmcbpy)] 2+ is the best choise. On the other hand, if carboxyl containing bipyridine is designated to have less electron density in the excited state , [Ru(dpphen)2(tmcbpy)] 2+ is the best candidate.

    目 錄 表目錄 Ⅲ 圖目錄 Ⅳ 中文摘要 Ⅴ 英文摘要 Ⅵ 第一章 緒論 第一節 聯吡啶釕錯合物的簡介 1 第二節 釕化合物的應用 3 第三節 過渡金屬錯合物酸鹼性質之研究 8 第四節 實驗的目的與設計 12 第二章 實驗部份 第一節 一般實驗處理 13 第二節 儀器設備與實驗方法 13 第三節 藥品 17 第四節 配位基與縮寫代號 19 第五節 合成 21 第三章 結果與討論 第一節 合成 35 第二節 吸收與冷光光譜 39 第三節 配位基與釕錯合物基態的pKa 47 第四節 釕錯合物冷光光譜與酸鹼的關係 53 第五節 釕錯合物之生命期 55 第六節 錯合物電位的測量 60 第七節 X-ray結構圖分析 62 第四章 結論 67 附圖 68 參考文獻 101

    參考文獻
    1. Felix, F.; Ferguson, J.; Gudel, H. U.; Ludi, A. J. Am. Chem. Soc. 1980, 102, 4096.
    2. Fujita, I.; Kobayashi, H. Inorg. Chem. 1973, 12, 2758.
    3. Hager, G. D.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7031.
    4. Demas, J. N.; Taylor, D. G. Inorg. Chem. 1979, 18, 3177.
    5. Kober, E. M.; Meyer, T. J. Inorg. Chem. 1982, 21, 3978.
    6. Hipps, K. W.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7042.
    7. Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583.
    8. Elfring, W. H., Jr.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, 2683.
    9. Winkler, J. R.; Nocera, D. G.; Yocom, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1982, 104, 5798.
    10. Winkler, J. R.; Nocera, D. G.; Yocom, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5145.
    11. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992.
    12. Porter, T. D.; Coon, M. J. J. Biol. Chem. 1991, 266, 13496.
    13. Watanabe, Y.; Groves, J. T. Enzymes. 1992, 20, 405.
    14. Winkler, J. R.; Gray, H. B. Chem. Rev. 1992, 92, 369.
    15. Tsai, T.-C.; Chang, I.-J. J. Am. Chem. Soc. 1998, 120, 227.
    16. Mussell, R. D.; Nocera, D. G. J. Am. Chem. Soc. 1988, 110, 2764.
    17. 蔡東洲, 國立台灣師範大學化學研究所碩士論文, 1997年
    18. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    19. Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am. Chem. Soc. 1999, 121, 3525
    20. Rudmann, H.; Rubner, M. F. J. Appl. Phys. 2001, 90, 4338.
    21. Gao, F. G.; Bard, A. J. J. Am. Chem. Soc. 2000, 122, 7426.
    22. Rudmann, H.; Shimada, S.; Rubner, M. F. J. Am. Chem. Soc. 2002, 124, 4918.
    23. Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269, 1086.
    24. Zheng, G. Y.; Wang, Y.; Rillema, D. P. Inorg. Chem. 1996, 35, 7118.
    25. Chou, Pi-Tai ; Martinez, M. L.; Clements, J. H. Chem. Phys. Lett. 1993, 204, 395.
    26. Cummings, S. D.; Eisenberg, R. Inorg. Chem. 1995, 34, 3396.
    27. Dmitruk, S. L.; Druzhinin, S. I.; Kovalenko, M. F.; Uzhinov, B. M. J. Photochem. Photobiol. A: Chem. 1995, 88 , 129.
    28. Venkatachalapathy, B.; Ramamurthy, P.; Ramakrishnan, V. T. J. Photochem. Photobiol. A: Chem. 1997, 111 , 163.
    29. Biondic, M. C.; Erra-Balsells, R. J. Chem. Soc., Perkin Trans. 2, 1997, 1323.
    30. Casalboni, F.; Mulazzani, Q. G.; Clark, C. D.; Hoffman, M. Z.; Orizondo, P. L.; Perkovic, M. W.; Rillema, D. P. Inorg. Chem. 1997, 36, 2252.
    31. Clark, C. D.; Hoffman, M. Z.; Rillema, D. P.; Mulazzani, Q. G. J. Photochem. Photobiol. A: Chem. 1997, 110 , 285.
    32. Rugge, A.; Clark, C. D.; Hoffman, M. Z.; Rillema, D. P. Inorg. Chim. Acta 1998, 279, 200.
    33. Wang, R.; Liang, Y.; Schmehl, R. H. Inorg. Chim. Acta 1994, 225, 275.
    34. (a) Montalti, M.; Wadhwa, S.; Kim, W, Y.; Kipp, R. A.; Schmehl, R. H. Inorg. Chem. 2000, 39, 76. (b) Su, C.-H.; Chang, I.-J. J. Chin. Chem. Soc. 1998, 45, 361.
    35. Collins, J. E.; Lamba, J. J. S.; Christopher, L. J.; McAlvin, J. E.; Ng, C.; Peters, B. P.; Wu, Xufeng ; Fraser, C. L. Inorg. Chem. 1999, 38, 2020.
    36. Kaschak, D. M.; Mallouk, T. E.; J. Am. Chem. Soc. 1996, 118, 4222.
    37. Mallouk, T. E.; Keller, S. W.; Kim, H-N. J. Am. Chem. Soc. 1994, 116, 8817.
    38. Fernando, S. R. L.; Maharoof, U.S. M.; Deshayes, K. D.; Kinstle, T. H.; Ogawa, M. Y. J. Am. Chem. Soc. 1996, 118, 5783.
    39. Sprintschnik, G.; Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 4947.
    40. Shimidzu, T.; Iyoda, T.; Izaki, K. J. Phys. Chem. 1985, 89, 642.
    41. Giordano, J.; Bock, C. R.; Wrighton, M. S. J. Am. Chem. Soc. 1977, 99, 3187.
    42. Dose, E. V.; Wilson, L. J. Inorg. Chem. 1978, 17, 2660.
    43. Haga, M.; Tanaka, T. Chem. Lett. 1979, 863.
    44. (a) Long, C.; Vos, J. G. Inorg. Chim. Acta 1984, 89, 125. (b) Sun, H.; Hoffman, M. Z. J. Phys. Chem. 1993, 97, 5014. (c) Cargill Thompson, A. M. W.; Smailes, M. C. C.; Jeffery, J. C.; Ward, M. D. J. Chem. Soc., Dalton Trans. 1997, 737.
    45. Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1995, 117, 704.
    46. Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S. Holten, D. F. J. Am. Chem. Soc. 1997, 119, 11191.
    47. Förster, T. Z. Elektrochem. 1950, 54, 531.
    48. Vos, J. G. Polyhedron 1992, 11, 2285.
    49. Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem. 1976, 12, 131.
    50. Peek, B. M.; Ross, G. T.; Edwards, S. W.; Meyer, G. J.; Meyer, T. J.; Erickson, B. W. Int. J. Pept. Protein Res. 1991, 38, 114.
    51. Kirby, J. P.; Roberts, J. A.; Nocera, D. G. J. Am. Chem. Soc. 1995, 117, 8501.
    52. Kirby, J. P.; Roberts, J. A.; Nocera, D. G. J. Am. Chem. Soc. 1997, 119, 9230.
    53. Fan, B.; Fonteont, D. L.; Larsen, R. W.; Simposon, M. C.; Shelnutt, J. A.; Falcon. R.; Martinez, L.; Niu, S.; Zhang, S.; Niemczyk, T.; Ondrias, M. R. Inorg. Chem. 1997, 36, 3839.
    54. Fan, B.; Simposon, M. C.; Shelnutt, J. A.; Maryinez, L.; Falcon, R.;Burnada, T.; Pastuszyn, A. J.; Ondrias, M. R. Inorg. Chem. 1997, 36, 3847.
    55. Geisser, B.; Ponce, A.; Alsfasser, R. Inorg. Chem. 1999, 38, 2030.
    56. Alsfasser, R.; Van Eldik, R. Inorg. Chem. 1996, 35, 628.
    57. Zakeeruddin, S. M.; Nazeeruddin, Md. K.; Humphry-Baker, R.; Grätzel, M. Inorg. Chem. 1998, 37, 5251.
    58. Wang, R.; Vos, J. G.; Schmehl, R. H.; Hage, R. J. Am. Chem. Soc. 1992, 114, 1964.
    59. Whitten, D. G.; Kirsch P. P.; Sprintschnik, G. J. Am. Chem. Soc. 1997, 119, 4953.
    60. Mines, G. A.; Bjerrum, M. J.; Hill, M. G.; Chang, I.-Jy.; Gray, H. B. J. Am. Chem. Soc. 1996, 118, 1961.
    61. Peek, B. M.; Ross, G. T.; Edwards, S. W.; Meyer, G. J.; Meyer, T. J.; Erickson, B. W. Int. J. Pept. Protein Res. 1991, 38, 114.
    62. Haginiwa, J. J. Pharm. Soc. Jpn. 1955, 75, 731
    63. Murase, I. Nippon Kagaku Zasshi. 1956, 77, 682.
    64. David Wenkert ; Woodward, R. B. J. Org. Chem. 1983, 48, 283
    65. (a) 許德紹, 國立中興大學化學研究所碩士論文, 1997年. (b) Barqawi, K. R.; Llobet, A.; Meyer, T. J. J. Am. Chem. Soc. 1988, 110, 7751.
    66. Connor, A. J.; Overton, C. Journal of Organometallic Chemistry 1983, 249, 165
    67. (a) Byung, H. H.; Dae, H. S.; Sung, Y. C. Tetrahdron Letters 1985, 50, 6233. (b) Bellamg, F. D.; Ou, K. Tetrahdron Letters 1984, 8, 839.
    68. Sprintschnik, G.; Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 4947.
    69. 蘇建華, 國立台灣師範大學化學研究所博士論文, 2000年
    70. 陳喧應, 國立台灣師範大學化學研究所碩士論文, 2001年

    無法下載圖示
    QR CODE