簡易檢索 / 詳目顯示

研究生: 劉沛淇
Liu, Pei-Chi
論文名稱: 原子層沉積寬能隙氧化鋅錫緩衝層用於高效/環境友善之銅鋅錫硫硒太陽能電池
Highly Efficient/ Eco-Friendly CZTSSe Solar Cells with Atomic Layer Deposited Wide Bandgap ZnSnO Buffer Layers
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
口試委員: 陳貴賢 林麗瓊 陳政營 陳家俊
口試日期: 2021/07/21
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鋅錫原子層沉積環境友善太陽能電池導帶位置差異晶格常數匹配載子濃度
英文關鍵詞: Zinc tin oxide, Atomic layer deposition, Eco-friendly solar cells, Conduction band offset, Lattice constant match, Carrier concentration
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101095
論文種類: 學術論文
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 中文摘要 ii Abstract iv 目錄 vi 表目錄 x 圖目錄 xi 第一章、緒論 1 1-1 前言 1 1-2 太陽能源 3 1-2-1 太陽輻射 3 1-2-2 太陽能電池發展 6 1-3 研究背景 7 1-4 研究動機 11 第二章、文獻回顧 13 2-1 太陽能電池基礎原理 13 2-1-1 太陽能電池工作原理 13 2-1-2 半導體材料的太陽能吸收原理 15 2-1-3 太陽能效率轉換計算 18 2-2 CZTSSe太陽能電池各層簡介 20 2-2-1 鈉鈣玻璃(Soda-lime glass) 21 2-2-2 鉬金屬背電極 22 2-2-3 銅鋅錫硫硒(CZTSSe)吸收層 23 2-2-4 硫化鎘(Buffer layers) 24 2-2-5 窗層 (Window layers) 26 2-2-6 前電極(Front contact) 26 2-2-7 抗反射層(Anti-reflection layer) 27 2-3 開路電壓散失 27 2-3-1 銅、鋅錯位缺陷 28 2-3-2 介面缺陷複合 29 2-3-3 導帶位置差異(Conduction Band Offset) 29 2-4 異質介面改善 31 2-4-1 晶格常數匹配 31 2-4-2 鈍化層 33 2-5 載子濃度與空乏區的關係 34 2-5-1: 增加載子濃度和厚度 37 2-5-2 增加內建電壓(built-in voltage) 38 2-6無鎘寬能隙緩衝層 39 2-7 原子層沉積原理與性質 40 第三章、實驗步驟與儀器 43 3-1 實驗步驟 43 3-1-1 基板清潔與準備 43 3-1-2 金屬前驅物製備 43 3-1-3 硫硒化製程 44 3-1-4 硫化鎘(CdS)緩衝層製備 45 3-1-5 氧化鋅錫(ZnSnO)緩衝層製備 46 3-1-6 窗層(Window layer)製備 48 3-1-7 前電極鍍製 49 3-1-8 抗反射層製備(anti-reflection layer) 49 3-2 實驗儀器介紹 50 3-2-1 濺鍍機 50 3-2-2 化學氣相沉積儀 51 3-2-3 化學水浴沉積槽 52 3-2-4 原子層沉積儀(Atomic Layer Deposition) 52 3-2-5 蒸鍍機 53 3-3 分析儀器介紹 54 3-3-1 橢圓偏光儀 (Ellipsometry) 54 3-3-2 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 55 3-3-3 紫外-可見光譜儀 56 3-3-4紫外光光電子能譜(Ultraviolet Photoelectron Spectroscopy, UPS) 57 3-3-5電化學阻抗譜 (Electrochemistry Impedance Spectroscopy, EIS) 57 3-3-6 太陽光模擬器 59 3-3-7 外部量子效率(External Quantum Efficiency, EQE) 59 3-3-8 掃描穿透式電子顯微鏡(Scanning Transmission Electron Microscopy,STEM) 60 3-3-9 能量色散X射線光谱儀(Energy Dispersive X-Ray Spectroscopy, EDS) 61 第四章、實驗結果與討論 62 4-1 ZnO/SnOx原子層沉積的溫度成長窗 62 4-2 ZnO/SnOx的超循環比控制Sn含量比 63 4-3 X射頻光電子能譜對不同Sn/(Zn+Sn)比的Zn1-xSnxO成分分析 64 4-4 預期與實際的Sn/(Zn+Sn)與循環比之關係圖 66 4-5紫外-可見光譜對不同Sn/(Zn+Sn)比的Zn1-xSnxO之能隙 67 4-6 氧化鋅錫與CZTSSe吸收層的能帶位置分布 68 4-7 介面之晶格匹配度 70 4-8 氧化鋅錫的載子濃度 72 4-9 Zn1-xSnxO元件的厚度效應 74 4-10不同Sn/(Zn+Sn)比例的氧化鋅錫緩衝層在元件的影響 75 4-11 外部量子效率(External Quantum Efficiency, EQE) 78 4-12 掃描透射電子顯微鏡 (STEM)-元件橫截面影像 79 第五章、結論 82 參考文獻 83

    [1] B. P. Center, Annual energy outlook 2021, Energy Information Administration, 2021.
    [2] IRENA,Power_Generation_Costs. Available from: https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
    [3] Reference Air Mass 1.5 Spectra. Available from: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
    [4] The definition of various global (G) air mass (AM) under condition AM 1.5 G. https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun
    [5] P.Singh et al., "Temperature dependence of solar cell performance—an analysis," Solar energy materials and solar cells, vol. 101, pp. 36-45, 2012.
    [6] N. Lab. "Best Research-Cell Efficiency Chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html
    [7] D. J. S. et al., "First Solar’s CdTe module technology – performance,life cycle, health and safety impact assessment," Centre for Renewable and Sustainable Energy Studies, 2015.
    [8] T. Tinoco et al., "Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys," physica status solidi (a), vol. 124, no. 2, pp. 427-434, 1991.
    [9] Abundance of elements in Earth's crust. Available from: https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust
    10] U.S. indium market volume by product. Available from: https://sites.google.com/site/electronicindustryhighlights/indium-market-size-to-reach-584-8-million-by-2025-key-industry-players-umicore-nystar
    [11] C. Wadia et al., "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environmental science & technology, vol. 43, no. 6, pp. 2072-2077, 2009.
    [12] M. Jiang et al., "Cu2ZnSnS4 thin film solar cells: present status and future prospects," Solar Cells—Research and Application Perspectives, 2013.
    [13] K. Ito et al., "Electrical and optical properties of stannite-type quaternary semiconductor thin films," Japanese Journal of Applied Physics, vol. 27, no. 11R, p. 2094, 1988.
    [14] S. Delbos et al.,"Kësterite thin films for photovoltaics: a review," EPJ Photovoltaics, vol. 3, p. 35004, 2012.
    [15] K. Woo et al., "Band-gap-graded Cu2 ZnSn(S1-x,Se x)4 solar cells fabricated by an ethanol-based, particulate precursor ink route," Scientific reports, vol. 3, no. 1, pp. 1-7, 2013.
    [16] J. B. Li et al., "Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy," Advanced Materials, vol. 24, no. 6, pp. 720-723, 2012.
    [17] D. B. Mitzi et al., "The path towards a high-performance solution-processed kesterite solar cell," Solar Energy Materials and Solar Cells, vol. 95, no. 6, pp. 1421-1436, 2011.
    [18] T. Minemoto et al., "Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation," Solar Energy Materials and Solar Cells, vol. 67, no. 1-4, pp. 83-88, 2001.
    [19] M. Nakamura et al., "Cd-free Cu(In,Ga)(Se,S)¬2 thin-film solar cell with record efficiency of 23.35%," IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863-1867, 2019.
    [20] T. Minemoto et al., "Theoretical analysis on effect of band offsets in perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 133, pp. 8-14, 2015.
    [21] Solar Cell: Working Principle & Construction. Available from: https://www.electrical4u.com/solar-cell/
    [22] pn_junction .Available from: http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
    [23] A. Mannu et al., "Band-Gap energies of choline chloride and triphenylmethyl-phosphoniumbromide-based systems," Molecules, vol. 25, no. 7, p. 1495, 2020.
    [24] J. Jean et al., "Radiative efficiency limit with band tailing exceeds 30% for quantum dot solar cells," ACS Energy Letters, vol. 2, no. 11, pp. 2616-2624, 2017.
    [25] M. Noman et al., "Germanium telluride absorber layer, a proposal for low illumination photovoltaic application using AMPS 1D," in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), 2018: IEEE, pp. 1-5.
    [26] Dark and light IV curve. Available from: http://met.usc.edu/projects/solarcells.php.
    [27] R. J. Langley and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, vol. 18, no. 7, pp. 294-296, 1982
    [28] W. J. Yin et al.,"Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: a first‐principle study," Advanced Energy Materials, vol. 4, no. 1, p. 1300712, 2014.
    [29] Y. T. Hsieh et al., "Efficiency enhancement of Cu2ZnSn(S, Se)4 solar cells via alkali metals doping," Advanced Energy Materials, vol. 6, no. 7, p. 1502386, 2016.
    [30] Z. K. Yuan et al., "Na‐diffusion enhanced p‐type conductivity in Cu(In,Ga)Se2: A new mechanism for efficient doping in semiconductors," Advanced Energy Materials, vol. 6, no. 24, p. 1601191, 2016.
    [31] S. Chen et al., "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers," Advanced materials, vol. 25, no. 11, pp. 1522-1539, 2013.
    [32] C. M. Sutter-Fella et al., "Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells," Chemistry of Materials, vol. 26, no. 3, pp. 1420-1425, 2014.
    [33] K. Sardashti et al., "Impact of nanoscale elemental distribution in high‐performance kesterite solar cells," Advanced Energy Materials, vol. 5, no. 10, p. 1402180, 2015.
    [34] M. Jubault et al.,"Optimization of molybdenum thin films for electrodeposited CIGS solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. S26-S31, 2011.
    [35] A. Khare et al.,"Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments," Journal of Applied Physics, vol. 111, no. 8, p. 083707, 2012.
    [36] W. Wang et al., "Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency," Advanced energy materials, vol. 4, no. 7, p. 1301465, 2014.
    [37] J. J. Scragg et al.,"Conversion of Precursors into Compound Semiconductors," in Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Springer, 2011, pp. 59-110.
    [38] P. Van Mieghem et al.,"Theory of band tails in heavily doped semiconductors," Reviews of modern physics, vol. 64, no. 3, p. 755, 1992.
    [39] J. Li et al., "Cation substitution in earth‐abundant kesterite photovoltaic materials," Advanced Science, vol. 5, no. 4, p. 1700744, 2018.
    [40] M. Bär et al., "CdS/low-band-gap kesterite thin-film solar cell absorber heterojunction: Energy Level alignment and dominant recombination process," ACS Applied Energy Materials, vol. 1, no. 2, pp. 475-482, 2018.
    [41] S. Rondiya et al., "CZTS/CdS: interface properties and band alignment study towards photovoltaic applications," Journal of Materials Science: Materials in Electronics, vol. 29, no. 5, pp. 4201-4210, 2018.
    [42] Y. J. Chang et al., "Growth, characterization and application of CdS thin films deposited by chemical bath deposition," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 37, no. 4, pp. 398-405, 2005.
    [43] C. Y. Chen et al., "Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts," Nano Energy, vol. 51, pp. 597-603, 2018
    [44] Anti-reflection coating. Available from: https://www.toppan.co.jp/electronics/english/display/anti_reflection_film/
    [45] S. Bourdais et al., "Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells?," Advanced Energy Materials, vol. 6, no. 12, p. 1502276, 2016.
    [46] J. J. Scragg et al., "Cu–Zn disorder and band gap fluctuations in Cu2ZnSn (S,Se)4 : Theoretical and experimental investigations," physica status solidi (b), vol. 253,
    no. 2, pp. 247-254, 2016.
    [47] L. Yin et al., "Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization," Rsc Advances, vol. 5, no. 50, pp. 40369-40374, 2015.
    [48] S. Gao et al., "Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells," Chinese Physics B, vol. 27, no. 1, p. 018803, 2018.
    [49] J. Varley et al.,"Ambipolar doping in SnO,"Applied Physics Letters, vol. 103, no. 8, p. 082118, 2013.
    [50] S. Huang et al., "Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method," Journal of Physics D: Applied Physics, vol. 46, no. 23, p. 235108, 2013.
    [51] C. G. Van de Walle et al., "Universal alignment of hydrogen levels in semiconductors, insulators and solutions," Nature, vol. 423, no. 6940, pp. 626-628, 2003.
    [52] J. Ge et al., "Oxygenated CdS buffer layers enabling high open‐circuit voltages in earth‐abundant Cu2BaSnS4 thin‐film solar cells," Advanced Energy Materials, vol. 7, no. 6, p. 1601803, 2017.
    [53] The properties of Zinc Oxide (ZnO) Semiconductors. Available from: https://www.azom.com/article.aspx?ArticleID=8417.
    [54] The properties of tin Dioxide (SnO2) Semiconductors. Available from: https://www.azom.com/article.aspx?ArticleID=8407.
    [55] J. M. Skelton et al., "Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport," Physical Chemistry Chemical Physics, vol. 19, no. 19, pp. 12452-12465, 2017.
    [56] T. Kirchartz et al., "Classification of solar cells according to mechanisms of charge separation and charge collection," Physical Chemistry Chemical Physics, vol. 17, no. 6, pp. 4007-4014, 2015.
    [57] H. Ruda et al., "Electron transport in ZnS," Journal of applied physics, vol. 68, no. 4, pp. 1714-1719, 1990.
    [58] M. J. Kerr et al., "General parameterization of Auger recombination in crystalline silicon," Journal of Applied Physics, vol. 91, no. 4, pp. 2473-2480, 2002.C..
    [59] C. Hu, Modern semiconductor devices for integrated circuits. Prentice Hall Upper Saddle River, NJ, 2010.
    [60] M. Hishida et al., "Designing band offset of a-SiO:H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p–i–n junction," Japanese Journal of Applied Physics, vol. 53, no. 9, p. 092301, 2014.
    [61] S. Karak et al., "Photovoltaic effect at the Schottky interface with organic single crystal rubrene," Advanced Functional Materials, vol. 24, no. 8, pp. 1039-1046, 2014.
    [62] Cadmium. Available from: https://en.wikipedia.org/wiki/Cadmium
    [63] J. Ramanujam et al., "Copper indium gallium selenide based solar cells– a review," Energy & Environmental Science, vol. 10, no. 6, pp. 1306-1319, 2017.
    [64] D. A. R. Barkhouse et al., "Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3," Applied Physics Letters, vol. 100, no. 19, p. 193904, 2012.
    [65] K. S. Gour et al., "Cd-free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: A review," Journal of nanoscience and nanotechnology, vol. 20, no. 6, pp. 3622-3635, 2020.
    [66] J. Li et al., "Restraining the Band Fluctuation of CBD‐Zn (O, S) Layer: Modifying the Hetero‐Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells with Cd‐Free Buffer Layer," Solar Rrl, vol. 1, no. 10, p. 1700075, 2017.
    [67] X. Li, et al., "8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer," Solar Energy Materials and Solar Cells, vol. 157, pp. 101-107, 2016.
    [68] X. Cui et al., "Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer," Chemistry of Materials, vol. 30, no. 21, pp. 7860-7871, 2018.
    [69] S. Mohammadnejad et al., "Enhancement of the performance of kesterite thin-film solar cells using dual absorber and ZnMgO buffer layers," Superlattices and Microstructures, vol. 144, p. 106587, 2020.
    [70] S. Tan et al., "Highly selective directional atomic layer etching of silicon," ECS Journal of Solid State Science and Technology, vol. 4, no. 6, p. N5010, 2015.
    [71] H. Profijt et al., "Plasma-assisted atomic layer deposition: basics, opportunities, and challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 5, p. 050801, 2011.
    [72] H. C. Knoops et al., "Atomic layer deposition," in Handbook of Crystal Growth: Elsevier, 2015, pp. 1101-1134.
    [73] Magnetron-sputtering. Available from: https://www.sciencedirect.com/topics/materials-science/magnetron-sputtering
    [74] Thermal evaporation. Available from: http://www.semicore.com/news/71-thin-film-deposition-thermal-evaporation
    [75] Ellipsometry. Available from: https://en.wikipedia.org/wiki/Ellipsometry
    [76] X-ray photoelectron pectroscopy(XPS). Available from: https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
    [77] M. Laurin "Example: Principle of X-ray photoelectron spectroscopy (XPS)," Principle of X-ray Photoelectron Spectroscopy (XPS). Np, vol. 26, 2009.
    [78] Tauc plot. Available from: https://en.wikipedia.org/wiki/Tauc_plot
    [79] K. Gelderman et al., "Flat-band potential of a semiconductor: using the Mott–Schottky equation," Journal of chemical education, vol. 84, no. 4, p. 685, 2007.
    [80] Principle of scanning transmission electron microscope. Available from: https://slideplayer.com/slide/6100922/
    [81] Principle of EDS. Available from: https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy.

    無法下載圖示 電子全文延後公開
    2026/08/24
    QR CODE