研究生: |
梁瑋琪 Leung, Wai-Ki |
---|---|
論文名稱: |
印尼西爪哇新生代火山岩之年代學與地球化學特徵研究 Geochronological and geochemical characteristics of Cenozoic volcanic rocks from West Java, Indonesia |
指導教授: |
賴昱銘
Lai, Yu-Ming |
口試委員: |
賴昱銘
Lai, Yu-Ming 朱美妃 Chu, Mei-Fei 彭君能 Pang, Kwan-Nang |
口試日期: | 2022/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 177 |
中文關鍵詞: | 印尼 、西爪哇 、巽他島弧 、新生代岩漿活動 、鋯石鈾鉛定年法 、全岩地球化學 |
英文關鍵詞: | Indonesia, West Java, Sunda Arc, Cenozoic magmatism, Zircon U-Pb dating, Whole-rock geochemical analysis |
DOI URL: | http://doi.org/10.6345/NTNU202201025 |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:103 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西爪哇位在爪哇島西部,為印度-澳洲板塊隱沒至歐亞板塊下所產生的新生代巽他-班達隱沒帶之一部分,其基盤岩石為巽他古陸大陸基盤,由板塊間的相互運動隨著時空演化,展現了不同的地體構造與演化階段,使得岩漿活動沿著平行與垂直島弧方向,在年代或地球化學上都有系統性的變化。過去研究工作都以巽他島弧東段整體討論,但針對局部地區相關研究顯少,特別是自中新世以來持續有岩漿活動的西爪哇西部。因此,本研究在西爪哇西部5個火山岩體(Danau火山群、Gede火山群、Bayah Dome地區的北部、南部,以及Ciemas地區)採集了58個火山岩樣本,藉由鋯石鈾鉛定年結合全岩地球化學數據,以了解此區域火山岩漿的地球化學特徵、來源與成因機制,以及其地體構造與演化階段。
西爪哇西部新生代以來岩漿活動隨時間區分為三期,依序為中新世中期(17.0-11.4百萬年)、中新世晚期(9.8-5.4百萬年)及更新世(2.4-0.7百萬年),當中捕獲了白堊紀(145-140百萬年)與漸新世(26.0-22.1百萬年)的繼承鋯石,隨空間分布,中新世兩期出露在Bayah Dome地區,而更新世為西爪哇最年輕的火山岩體,並且遍布於整個西爪哇西部。在全岩地球化學上,三期岩漿皆為鈣鹼性序列的岩漿活動,由基性的玄武岩至中酸性的石英安山岩所構成(SiO2=50-69 wt.%),礦物組成有斜長石、角閃石、輝石類斑晶,部分酸性樣本含有少量的石英,並且都具有輕微的輕稀土元素相對富集(LREE/HREE=1.56-2.77)、微銪負異常(δEu=0.73-0.97),以及高場力鍵結元素虧損的現象,呈現典型的島弧岩漿地球化學特徵,代表在西爪哇西部三期岩漿的地球化學特徵大致相似。在全岩鍶釹同位素的比值上,中新世中期岩石具有εNd(0)值為+2.04至+3.78及87Sr/86Sr為0.7042至0.7057,中新世晚期岩石具有εNd(0)值為-0.80至+2.82及87Sr/86Sr為0.7043至0.7059,而更新世岩石具有εNd(0)值為-2.01至+3.61及87Sr/86Sr為0.7044至0.7069。
本研究的實驗結果,發現印度-澳洲板塊在西爪哇西部呈現多階段的隱沒作用,並可將島弧火山的空間分布與噴發時間相聯結,由Bayah Dome南部往北的Bayah Dome北部與Danau火山群,以垂直島弧方向有遠離海溝年代從17至2.4百萬年逐漸年輕的現象,並且推論三期的岩漿皆為地函楔和隱沒沉積物發生不同程度的部分熔融後形成的岩漿,混和後經結晶分異作用而噴發,繼而重建西爪哇西部新生代的地體演育過程與模擬圖。隨著巽他-班達島弧由東至西的地體構造演化,西爪哇西部源區早已在17百萬年前受到混染(εNd(0)值為+1.6至+3.8),並形成了中新世中期至更新世(17-2.4百萬年)岩漿,後來因中-東爪哇有斷裂的板塊隱沒至島弧下方過程中,以及隨著巽他海峽開始擴張,使得中-東爪哇與東蘇門答臘的岩漿活動停止,反映由東蘇門答臘至中-東爪哇(含西爪哇)的隱沒板塊相對較難隱沒,且其隱沒角度逐漸平緩,西爪哇西部岩漿活動以垂直島弧方向,由南往北的年代有逐漸年輕的現象。直到在2.4百萬年後,因中-東爪哇的斷裂板塊已隱沒至島弧下方,與從地球物理中發現東蘇門答臘-西爪哇隱沒板塊存有一個間隙,反映西爪哇西部曾發生隱沒板塊回捲,且角度再次變徒峭,從而有大量來自軟流圈的熱流上湧至源區,且在隱沒板塊上方有更多的沉積物熔體熔融,形成不同岩漿來源的特徵(εNd(0)值為+0.81至-2.01),以及更新世火山活動遍及整個西爪哇西部(由南部往北部)。
West Java is situated in the western part of Java and underlain by continental basement rocks of Sundaland. It is part of Sunda-Banda subduction zone and was built through multiple events of Cenozoic magmatism produced by Indian-Australian Plate subducted beneath Eurasian Plate. With temporal and spatial evolutions of interaction between the plates, magmatism displays along-arc and across-arc variations of geochronological and geochemical constraints. Previous studies have focused on discussing the systematic variations in the eastern part of the Sunda arc, however, relevant studies of temporal and spatial evolution in the western part of West Java, where the magmatism has been continuing since Miocene, remain poorly studied. Therefore, this study collected 58 volcanic rocks from 5 volcanic complexes (Danau Volcanic Complex, Gede Volcanic Complex, Bayah Dome (North), Bayah Dome (South), and Ciemas) in the western part of West Java, and presented new zircon U-Pb ages and whole-rock geochemical data, to better understand geochemical characteristics of multiple magmatic events, magma genesis and tectonic evolution of the subduction environment.
The zircon U-Pb results show 3 stages of magmatic events, from Mid-Miocene (17.0-11.4 Ma) to Late Miocene (9.8-5.4 Ma) and Pleistocene (2.4-0.7 Ma), including Cretaceous (145-140 Ma) and Oligocene (26.0-22.1 Ma) inherited zircons. We found that the Mid to Late Miocene volcanic rocks are exposed in the Bayah Dome (North & South), while the youngest volcanic rocks of Pleistocene spread throughout the whole study area. In the whole-rock geochemical results, volcanic rocks in the West Java are composed of calc-alkaline basalt to dacite (SiO2=50-69 wt.%) and mineral assemblages are plagioclase, hornblende, and pyroxene ± quartz. All calc-alkaline volcanic rocks display slightly enrichment in light rare earth elements (LREE/HREE=1.56-2.77) and slightly negative europium anomalies (δEu=0.73-0.97). In multi-element distribution patterns show depletion in high field strength elements and exhibiting a typical geochemical characteristic of island arc magma. For whole-rock Sr-Nd isotopes, the calc-alkaline samples from Mid-Miocene display εNd(0) values from +2.04 to +3.78 and 87Sr/86Sr values from 0.7042 to 0.7057, those from the Late Miocene display εNd(0) values from -0.80 to +2.82 and 87Sr/86Sr values from 0.7043 to 0.7059, and those from Pleistocene display εNd(0) values from -2.01 to +3.61 and 87Sr/86Sr values from 0.7044 to 0.7069.
This study suggested that the multi-stages subduction of the Indian-Australian Plate occurred in West Java and the spatial distribution of 5 volcanic complexes can be linked with magmatic events. We found that the magmatism became progressively younger from the south of Bayah Dome to the north of Bayah Dome and Danau Volcanic Complex. The mantle source is probably derived from partial melting of the mantle wedge and subducted sediments, further undergoing the processes of fractional crystallisation to erupt in the Cenozoic Era. Furthermore, this study establishes a new tectonic evolution model of the western part of West Java based on the above results and discussions. The calc-alkaline magmatism has already undergone source contamination (εNd(0) values = +1.6 to +3.8) before 17 Ma and further formed the Mid-Miocene to Pleistocene (17-2.4 Ma) arc magmatism. During the 17-2.4 Ma period, the tectonic evolution of the Sunda arc from east to west, including the process of slab breakoff and further subducting beneath the Central-East Java, and extension of Sunda Strait caused magmatism of East Sumatra and Central-East Java to cease, reflecting the subducted slab from East Sumatra to Central-East Java (including West Java) shifted from high to low-angle subduction, and causing continuous magmatism in the West Java to migrate from the south to the north in the study area. Until 2.4 Ma, the tearing slab segment of Central-East Java subducted underneath the greater depth, and a gap is found in the slab beneath the boundary of East Sumatra-West Java through geophysics, these tectonic evolutions might reflect subducting slab beneath the western part of West Java rollback with steep angle subduction, with extra heat flow ascending from the asthenosphere and melting more subducted sediments. This mechanism changed the magmatic composition with εNd(0) values from +0.81 to -2.01 and the Pleistocene volcanism distributed in the whole study area (from the south to north).
Abdurrachman, M. (2012). Geochemical variation of Quaternary volcanic rocks in Papandayan area, West Java, Indonesia: A role of crustal component. Journal of the Geological Society of Thailand, 1–18.
Adiwidjaja, P., & Decoster, G. L. (1973). Pre-Tertiary paleotopography and related sedimentation in South Sumatra. P. T. Stanvac Indonesia, 1–36.
Allègre, C. (2008). Isotope Geology (C. Sutcliffe, Trans.). Cambridge: Cambridge University Press, 1–512.
Allègre, C. J. (1982). Chemical geodynamics. Tectonophysics, 81(3), 109–132.
Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192(1), 59–79.
Andersen, T. (2008). Appendix A3L ComPbCorr-software for common lead correction of U-Th-Pb analyses that do not report 204Pb: Laser ablation-ICP-MS in the earth sciences. current practices and outstanding issues, Mineralogical Association of Canada Short Course Series, 40, 312–314.
Angeles, C. A., Prihatmoko, S., & Walker, J. S. (2002). Geology and Alteration-Mineralization Characteristics of the Cibaliung Epithermal Gold Deposit, Banten, Indonesia. Resource Geology, 52(4), 329–339.
Arculus, R. J., & Johnson, R. W. (1981). Island-arc magma sources: A geochemical assessment of the roles of slab-derived components and crustal contamination. Geochemical Journal, 15(3), 109–133.
Arpandi, D., & Patmosukismo, S. (1975). The Cibulakan Formation as one of the most prospective stratigraphic units in the north-west Java basinal area.
Asikin. 1974. Geologic evolution of Central Java and surroundings in the light of New Global Tectonics. Doctorate Thesis, Department of Geology, Institut Teknologi Bandung.
Barber, A. J., & Crow, M. J. (2005). Pre-tertiary stratigraphy. Geological Society, London, Memoirs, 31(1), 24–53.
Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331–3350.
Chauvel, C., & Blichert-Toft, J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190(3), 137–151.
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I.-J., Iizuka, Y., Xie, L.-W., Wang, Y., & Chu, M.-F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1–2), 3–19.
Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M., & Iizuka, Y. (2013). Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163, 70–87.
Cliff, R.A. (1985). Isotopic dating in metamorphic belts. Journal of the Geological Society, 142, 97–110.
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500.
Cunningham, H. S., Turner, S. P., Dosseto, A., Patia, H., Eggins, S. M., & Arculus, R. J. (2009). Temporal Variations in U-series Disequilibria in an Active Caldera, Rabaul, Papua New Guinea. Journal of Petrology, 50(3), 507–529.
Dahren, B., Troll, V. R., Andersson, U. B., Chadwick, J. P., Gardner, M. F., Jaxybulatov, K., & Koulakov, I. (2012). Magma plumbing beneath Anak Krakatau volcano, Indonesia: Evidence for multiple magma storage regions. Contributions to Mineralogy and Petrology, 163(4), 631–651.
Dupuy, C. and Dostal, J., (1978). Geochemistry of calc-alkaline volcanic rocks from southeastern Iran (kouh-e-shahsavaran). Journal of Volcanology and Geothermal Research, 4, 363–373.
Effendi, A. C., Kusnama, & Hermanto, B. (2011). Peta Geologi Lembar Bogor, Jawa. Pusat Penelitian Dan Pengembangan Geologi, Bandung.
Faure, G., & Mensing, T. M. (2005). Principles and applications. John Wiley & Sons, Inc., p. 897.
Foley, S. F., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2), 81–134.
Gardner, M. F., Troll, V. R., Gamble, J. A., Gertisser, R., Hart, G. L., Ellam, R. M., Harris, C., & Wolff, J. A. (2013). Crustal Differentiation Processes at Krakatau Volcano, Indonesia. Journal of Petrology, 54(1), 149–182.
Gill, R. (2010). Igneous Rocks and Processes: A Practical Guide. Wiley-Blackwell, 1–552.
Goldschmidt, V. M. (1937). The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. Journal of the Chemical Society (Resumed), 655–673.
Gorton, M. P., & Schandl, E. S. (2000). From Continents To Island Arcs: A Geochemical Index Of Tectonic Setting For Arc-Related And Within-Plate Felsic To Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5), 1065–1073.
Green, T. H. (1980). Island arc and continent-building magmatism—A review of petrogenic models based on experimental petrology and geochemistry. Tectonophysics, 63(1), 367–385.
Gutscher, M.-A., Maury, R., Eissen, J.-P., & Bourdon, E. (2000). Can slab melting be caused by flat subduction? Geology, 28(6), 535.
Hall, R., & Spakman, W. (2002). Subducted slabs beneath the eastern Indonesia–Tonga region: Insights from tomography. Earth and Planetary Science Letters, 201(2), 321–336.
Hanchar, J. M., & Miller, C. F. (1993). Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology, 110(1), 1–13.
Hanchar, J. M., & Rudnick, R. L. (1995). Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos, 36(3), 289–303.
Harijoko, A., Ohbuchi, Y., Motomura, Y., Imai, A., & Watanabe, K. (2007). Characteristics of the Cibaliung Gold Deposit: Miocene Low-Sulfidation-Type Epithermal Gold Deposit in Western Java, Indonesia. Resource Geology, 57(2), 114–123.
Harjono, H., Diament, M., Dubois, J., Larue, M., & Zen, M. T. (1991). Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implications. Tectonics, 10(1), 17–30.
Harker, A. (1909). The Natural History of Igneous Rocks. Methuen and Co., London, 1–344.
Harsono, P. (1983). Biostratigraphy and paleogeography of North East Java Basin, a new approach. Doctorate Thesis, Institut Teknologi Bandung.
Hawkesworth, C., Turner, S., Peate, D., McDermott, F., & van Calsteren, P. (1997). Elemental U and Th variations in island arc rocks: Implications for U-series isotopes. Chemical Geology, 139(1), 207–221.
Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/ 235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076), 1610–1614.
Hildreth, W. and Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98, 455–489.
Huang Z., Zhao D. and Wang L. (2015). P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. Journal of Geophysical Research: Solid Earth, 120, 5154–5174.
Hutchinson, C. (1976). Indonesian active volcanic arc: K, Sr and Rb variation with depth to the Benioff zone. Geology, 4, 407–408.
Hutchinson, C. (1982). Indonesia. Andesites: Orogenic Andesites and Related Rocks, 207–224.
Hutchinson, C. (1989). Geological evolution of South-east Asia. Oxford Monographs on Geology and Geophysics, 13, pp. 368.
Irvine, T. N., & Baragar, W. R. A. (1971). A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5), 523–548.
Ito, E., White, W. M., & Göpel, C. (1987). The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62(3), 157–176.
Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1), 47–69.
Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139–155.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5), 1889–1906.
Jarrard, R. D. (1986). Terrane motion by strike-slip faulting of forearc slivers. Geology, 14(9), 780–783.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3), 333–338.
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., & Enzweiler, J. (2016). Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3), 333–350.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429.
Johnson, M. C., & Plank, T. (1999). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12), 1–26.
Kageyama, T. (1999) A Study on the Formation of Ore Deposits in the Island Arc Junctions: With Special Reference to the Pongkor Deposit, West Java, Indonesia. Unpubl. MSc Thesis, Hokkaido Univ., 78p.
Kay, R. W., & Kay, M. S. (1993). Delamination and delamination magmatism. Tectonophysics, 219(1), 177–189.
Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724–727.
Kirchenbaur M., Schuth S., Barth A. R., Luguet A., Ko ̈nig S., Idrus A. and Garbe-Schönberg, D. (2022). Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java. Contributions to Mineralogy Petrology, 177, 8.
Kohno Y, Taguchi S, Agung H, Pri U, Imai A, Watanabe K (2006). Geological and geochemical study on the Ungaran geothermal field, Central Java, Indonesia: an implication in genesis and nature of geothermal water and heat source. Proceedings of the 4th International Workshop on Earth Science and Technology, Fukuoka, pp 367–374
Koulakov, I., Bohm, M., Asch, G., Lühr, B.-G., Manzanares, A., Brotopuspito, K. S., Fauzi, P., Purbawinata, M. A., Puspito, N. T., Ratdomopurbo, A., Kopp, H., Rabbel, W., & Shevkunova, E. (2007). P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. Journal of Geophysical Research: Solid Earth, 112(B8).
Kronenberg, A., Brandon, M., Fletcher, R., Karlstrom, K., Rushmer, T., Simpson, C., & Yin, A. (2002). Beyond plate tectonics: Rheology and orogenesis of the continents. In: New departures in structural geology and tectonics. New Departures in Structural Geology and Tectonics, 13–21.
Kundu B. and Gahalaut V. K. (2011). Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia. Journal Earth System Science, 120(2), 193–204.
Kurniawan, I., Hasenaka, T., & Suparka, E. (2011). Quartenary Gede Salak volcanic complex, Banten area, at the junction between Sumatra arc and Java arc, Indonesia. AGU Fall Meeting Abstracts, 2596.
Le Bas, M. J. (1989). Nephelinitic and basanitic rocks. Journal of Petrology, 30(5), 1299–1312.
Le Bas, M. J., Le Maitre, R. W., & Woolley, A. R. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46(1), 1–22.
Le Bas, M. J., Maitre, R. W. L., Streckeisen, A., Zanettin, B., & IUGS Subcommission on the Systematics of Igneous Rocks. (1986). A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3), 745–750.
Le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2004). Igneous Rocks: A Classification and Glossary of Terms. Cambridge, UK: Cambridge University Press, 1, pp. 252.
Lechler, P. J., & Desilets, M. O. (1987). A review of the use of loss on ignition as a measurement of total volatiles in whole-rock analysis. Chemical Geology, 63(3), 341–344.
Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., & Zhang, Q. (2012). Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53, 96–114.
Lelgemann, H., Gutscher, M.-A., Bialas, J., Flueh, E. R., Weinrebe, W., & Reichert, C. (2000). Transtensional basins in the western Sunda Strait. Geophysical Research Letters, 27(21), 3545–3548.
Ludwig, K.R. (2012). ISOPLOT/Ex, Version 4.15. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special, Publication, No.4.
Lugmair, G. and Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349–357.
Madden-Nadeau, A. L., Cassidy, M., Pyle, D. M., Mather, T. A., Watt, S. F. L., Engwell, S. L., Abdurrachman, M., Nurshal, M. E. M., Tappin, D. R., & Ismail, T. (2021). The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations. Journal of Volcanology and Geothermal Research, 411, 107176.
Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T. (1995). From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences, 12(1–2), 85.
Mandeville, C. W., Carey, S., & Sigurdsson, H. (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and Geothermal Research, 74(3), 243–274.
Marcoux, E., Milesi, J. P., Sohearto, S., & Rinawan, R. (1993). Noteworthy mineralogy of the Au-Ag-Sn-W(Bi) epithermal ore deposit of Cirotan, West Java, Indonesia. The Canadian Mineralogist, 31(3), 727–744.
Martodjojo, S. (1984). Evolution of Bogor Basin, West Java. Doctorate Thesis, Institut Teknologi Bandung.
Martodjojo, S., & Koesoemo, M. Y. P. (1993). Sea level changes and tectonic relationship between stable Rembang zone and unstable Kendeng zone. Proceedings, 22nd Annual Convention of the Indonesian Association of Geologists, 1993.
McCulloch, M. T., & Gamble, J. A. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3), 358–374.
McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3), 223–253.
Middlemost, E. A. K. (1975). The basalt clan. Earth-Science Reviews, 11(4), 337–364.
Möller, K., & Svahn, S. (2003). Managing Strategic Nets: A Capability Perspective. Marketing Theory, 3(2), 209–234.
Ninkovich, D. (1976). Late cenozoic clockwise rotation of Sumatra. Earth and Planetary Science Letters, 29(2), 269–275.
Othman, B. D., White, W. M., & Patchett, J. (1989). The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94(1), 1–21.
Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.), Orogenic andesites and related rocks (pp. 528–548). John Wiley and Sons.
Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. and Norry, M.J. eds. Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, pp. 230–249.
Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–286.
Plank T. (2014). The chemical composition of subducting sediment. Treatise Geochemistry 2nd Edition, 4, 607–625.
Plank, T. (2005). Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5), 921–944.
Pulunggono, A., & Cameron, N. R. (1984). Sumatran microplates, their characteristics and their role in the evolution of the Central and South Sumatra basins. 13th Annual Convention Proceedings, Volume 1, 121–143.
Rehkamper, M., & Hofmann, A. W. (1997). Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1), 93–106.
Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4), 247–263.
Rollinson, H.R. (1998). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, 1–352.
Rosenbaum, G., Gasparon, M., Lucente, F. P., Peccerillo, A., & Miller, M. S. (2008). Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism: Kinematics of slab tear faults. Tectonics, 27(2), 1–16.
Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S. and Bergquist, B. A. (2012). Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochimica et Cosmochimica Acta, 85, 41–57.
Rubatto, D., & Gebauer, D. (2000). Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In M. Pagel, V. Barbin, P. Blanc, & D. Ohnenstetter (Eds.), Cathodoluminescence in Geosciences. Springer, pp. 373–400.
Rustioni, G., Audetat, A., & Keppler, H. (2021). The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contributions to Mineralogy and Petrology, 176(7), 51.
Schlüter, H. U., Gaedicke, C., Roeser, H. A., Schreckenberger, B., Meyer, H., Reichert, C., Djajadihardja, Y., & Prexl, A. (2002). Tectonic features of the southern Sumatra-western Java forearc of Indonesia. Tectonics, 21(5), 11-1–11-15.
Schöffel, H. J., & Das, S. (1999). Fine details of the Wadati-Benioff zone under Indonesia and its geodynamic implications. Journal of Geophysical Research: Solid Earth, 104(B6), 13101–13114.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1–35.
Smyth, H.R., Hamilton, P.J., Hall R., Kinny, P.D. (2007). The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java Indonesia. Earth Planetary Science Letters, 258(1-2), 269–282.
Sribudiyani, N. M., Ryacudu, R., Kunto, T., Astono, P., Prasetya, I., Sapiie, B., Asikin, S., Harsolumakso, A. H., & Yulianto, I. (2003). The collision of the East Java Microplate and its implication for hydrocarbon occurrences in the East Java Basin. 29th Annual Convention Proceedings, Volume 1, 1–12.
Staudigel, H., Davies, G. R., Hart, S. R., Marchant, K. M., & Smith, Brian. M. (1995). Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth and Planetary Science Letters, 130(1), 169–185.
Stolper, E., & Newman, S. (1994). The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters, 121(3), 293–325.
Sudjatmiko. (2003). Peta Geologi Lembar Cianjur, Jawa. Pusat Penelitian Dan Pengembangan Geologi, Bandung.
Sukamto, R. (1975). Peta geologi Indonesia, lembar Ujung Pandang. Pusat Penelitian Dan Pengembangan Geologi, Bandung.
Sun, S. -s., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.
Syracuse E. M., van Keken P. E. and Abers G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., & Dragusanu, C. (2000). JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3), 279–281.
Tatsumi, Y., and Eggins, S. (1995). Subduction zone magmatism. Blackwell Science Inc., Cambridge, Massachusetts, 1–552.
Tatsumi, Y., Hamilton, D. L., & Nesbitt, R. W. (1986). Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29(1), 293–309.
van Bergen, M. J., Vroon, P. Z., & Hoogewerff, J. A. (1993). Geochemical and tectonic relationships in the east Indonesian arc-continent collision region: Implications for the subduction of the Australian passive margin. Tectonophysics, 223(1), 97–116.
Wetherill, G. W. (1956). Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37(3), 320–326.
Wetherill, G. W. (1963). Discordant uranium-lead ages: 2. Disordant ages resulting from diffusion of lead and uranium. Journal of Geophysical Research (1896-1977), 68(10), 2957–2965.
White, W.M. (2015). Isotope Geochemistry. Wiley-Blackwell, 1–478.
Widiyantoro, S., & van der Hilst, R. (1996). Structure and Evolution of Lithospheric Slab Beneath the Sunda Arc, Indonesia. Science, 271(5255), 1566–1570.
Widiyantoro, S., & van der Hilst, R. (1997). Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophysical Journal International, 130(1), 167–182.
Widiyantoro, S., Pesicek, J. D., & Thurber, C. H. (2011). Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geological Society, London, Special Publications, 355(1), 139–155.
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. l., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. c., & Spiegel, W. (1995). Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1), 1–23.
Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409(6817), 175–178.
Wilson, M. (1989). Mid-ocean ridges. In Igneous Petrogenesis. Springer Netherlands, pp. 101–150.
Wood, D. A., Joron, J.-L., & Treuil, M. (1979). A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2), 326–336.
Woodhead J. D., Hergt J. M., Davidson J. P. and Eggins S. M. (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planetary Science Letter, 192, 331–346.
Yang, Q.-Y., & Santosh, M. (2015). Early Cretaceous magma flare-up and its implications on gold mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews, 65, 626–642.
You, C.-F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1), 41–52.
Yu, Y., Huang, X. L., Chung, S. L., Li, J., Lai, Y. M., Setiawan, I., Sun, M. (2022). Molybdenum isotopic constraint from Java on slab inputs to subduction zone magmatism. Geochimica et Cosmochimica Acta, 1–18.
Zhang, X., Chung, S. L., Lai, Y. M., Ghani, A. A., Murtadha, S., Lee, H. Y., and Hsu, C. C. (2019). A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology, v. 47(6), p. 573–576.
Zindler, A., & Hart, S. (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.
田佳諭 (2018)南蘇拉威西新生代岩漿活動的時空變化與地體意義,國立臺灣大學地質科學研究所碩士論文,共137頁。
何春蓀 (2008)普通地質學(三版),五南,共750頁。
宋彪(2015)用SHRIMP測定鋯石U-Pb年齡的工作方法。地質通報,34(10),第1777-1788頁。
宋彪、張玉海、萬渝生與簡平(2002)鋯石 SHRIMP 樣品靶製作,年齡測定及有關現象討論。地質論評,(S1),第26-30頁。
李寄嵎、蔡榮浩、何孝恆、楊燦堯、鍾孫霖與陳正宏(1997)應用 X 光螢光分析儀從事岩石樣品之定量分析(I)主要元素。中國地質年會八十六年年會,第418-420頁。
辛怡儒 (2018)婆羅洲沙巴東南部中新世以來火山岩之年代學與地球化學特徵,國立臺灣大學地質科學研究所碩士論文,共123頁。
黃則寧 (2020)北蘇拉威西新生代岩漿活動的年代與地球化學特徵,國立臺灣大學地質科學研究所碩士論文,共117頁。