研究生: |
石顏彰 Shih, Yan-Jhang |
---|---|
論文名稱: |
特徵提取型同時定位與建圖演算法及其在FPGA之實現 FPGA-Based Realization for Feature Extracting Simultaneous Localization and Mapping |
指導教授: |
許陳鑑
Hsu, Chen-Chien 王偉彥 Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 同時定位及建圖 、粒子濾波器 、卡爾曼濾波器 、移動式機器人 、FPGA |
英文關鍵詞: | SLAM, Particle Filter, Kalman Filter, Mobile robot, FPGA |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FastSLAM 為解決同時定位與建圖的有效方法,但由於地標數過多,容易造成運算量過於龐大而導致系統發散。原始的快速同時定位及建圖(Fast Simultaneous Location and Mapping, FastSLAM)收斂效果好,但會因為地標數目增加所造成誤差的累積,而導致系統發散,論文中透過向量比對機制,使得特徵變化較大的感測資訊被保留下來,減少與現有地標比對的機會,且使得資料關聯的結果較為準確,最後更利用準確的地標更新機器人的位置以提升定位精準度。為了驗證論文所提出方法可以確實有效提升精確度以及降低其運算量,將會利用傳統FastSLAM與本論文所提出之特徵提取型SLAM以多種不同地圖進行模擬並比較其結果。同時,本論文也使用FPGA晶片將此改良同時定位及建圖實現於硬體電路以縮短運算時間,並增加其演算法之運用性。
FastSLAM is an effective method to solve simultaneous localization and mapping. However, when the number of landmarks increases, more comparisons of the current measurements with all the existing landmarks in particles will be compared and the accuracy of the estimated location of the robot and landmark decreases because of incorrect data association. In order to solve this problem, this thesis presents an enhanced architecture for FastSLAM called Feature Extracting SLAM (FESLAM), where current measurement is filtered to extract special measurement to avoid getting unnecessary and wrong landmarks. To further refine the robot pose, we use triangulation and set on maximum likelihood mapping framework. Simulation results show the proposed approach has a better performance in terms of better localization and mapping than those obtained by the traditional SLAM algorithms. To further reduce the computation time, the improved SLAM system algorithm is realized on FPGA circuit using a DE2i-150 to verify the practicability of the proposed algorithm. Experimental results show the execution efficiency of FESLAM is significantly improved by the full hardware design for embedded applications.
[1] iRobot的自動吸塵機器人-Roomb, URL: http://www.roomba.com.tw/
[2] 健康照護型機器人Jibo,
URL:https://www.indiegogo.com/projects/jibo-world-s-first-family-robot-4-800-pre-sold
[3] Dr. Robot 的住家保全機器人- Sentinel,
URL:http://www.pitotech.com.tw/show_product.php?btype=7<ype=401&id=401
[4] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping: part II,” IEEE Robot Autom. Mag., vol. 13, no. 3, pp. 108-117, 2006.
[5] J. J. Leonard and H. J. S. Feder, “A computationally efficient method for large-scale concurrent mapping and localization,” in Proc. Ninth International Symposium on Robotics Research (ISRR’99), 2000, pp. 169-176.
[6] J. Guivant, E. Nebot, and S. Baiker, “Localization and map building using laser range sensors in outdoor applications,” Journal of Robotic Systems, vol. 17, no. 10, pp. 565-583, 2000.
[7] S. B. Williams, P. Newman, G. Dissanayake, and H. F. Durrant-Whyte, “Autonomous underwater simultaneous localisation and map building,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), San Francisco, 2000, vol. 2, pp. 1793-1798.
[8] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey, “Map management for efficient simultaneous localization and mapping (SLAM),” Autonomous Robots, vol. 12, pp. 267-286, 2002.
[9] G. Welch and G. Bishop, “An introduction to the Kalman filter,” SIGGRAPH, Los Angeles, CA , 2001.
[10] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” International Journal of Robotics, vol. 5, pp. 56-58, 1986.
[11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” in Proc. AAAI National Conference on Artificial Intelligence, 2002, pp. 593-598.
[12] K. Murphy, “Bayesian map learning in dynamic environments,” Neural Information Proceedings System, vol. 12, pp. 1015-1021, 2000.
[13] L. Pedraza, D. Rodriguez-Losada, F. Matia, “Extending the limits of feature-based SLAM with B-splines,” IEEE Trans. on Robotics, vol. 25, pp. 353-366, April 2009.
[14] S. B. Williams, G. Dissanayake, and H. F. Durrant-Whyte, “An efficient approach to the simultaneous localisation and mapping problem,” in Proc. IEEE International Conference on Robotics and Automation, Washington, USA, 2002, pp. 406-411.
[15] G. Dissanayake, S. B. Williams, H. F. Durrant-Whyte, and T. Bailey, “Map management for efficient simultaneous localization and mapping (SLAM),” Autonomous Robots, vol. 12, no. 3, pp. 267-286, 2002.
[16] Q. Liping, H. Shuiqing, and Q. Yongyin, “An SLAM algorithm based on improved UKF,” in Proc. IEEE International Conference on Control and Decision Conference (CCDC), Taiyuan, 2012, pp. 4154-4157.
[17] A. Chatterjee, “Differential evolution tuned fuzzy supervisor adapted, extended Kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, pp. 411-423, 2009.
[18] A. Chatterjee and F. Matsuno, “A neuro-fuzzy assisted extended Kalman filter based approach for Simultaneous Localization and Mapping (SLAM) problems,” IEEE Trans. on Fuzzy Systems, vol. 15, pp. 984-997, 2007.
[19] A. Chatterjee and F. Matsuno, “A Geese PSO tuned fuzzy supervisor for EKF based solutions of simultaneous localization and mapping (SLAM) problems in mobile robots,” Expert Systems with Applications, vol. 37, pp. 5542-5548, 2010.
[20] A. Stentz, D. Fox, and M. Montemerlo, “FastSLAM: A factored solution to the simultaneous localization and mapping problem with unknown data association,” in Proc. AAAI National Conference on Artificial Intelligence, 2003, pp. 593-598.
[21] G. Dissanayake, P. Newman, H. F. Durrant-Whyte, S. Clark, and M. Csobra, “An experimental and theoretical into simultaneous localization and map building (SLAM),” Lecture Notes in Control and Information Sciences, Experimental Robotics VI, 2000, pp. 265-274.
[22] K. Murphy, “Bayesian map learning in dynamic environments,” Neural Information Proceedings System, vol. 12, pp. 1015-1021, 2000.
[23] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges,” in Proc. International Joint Conference on Artificial Intelligence, 2003, pp. 1151-1156.
[24] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with unknown data association using FastSLAM,” in Proc. IEEE Int. Conf. Robotics and Automation, 2003, pp. 1985-1991.
[25] C. K. Yang, C. C. Hsu, and T. T. Wang “Computationally efficient algorithm for simultaneous localization and mapping,” in Proc. Networking, Sensing and Control, 2013, pp. 328-332.
[26] Altera多媒體發展平台DE2i-150網址,
URL:http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
[27] Terasic Corporation, URL:http://www.terasic.com.tw/tw/
[28] Terasic Corporation, My_First_FPGA, Document Version 1.0, 2013.
[29] Terasic Corporation, My_First_ NiosII, Document Version 1.0, 2013.
[30] Terasic Corporation, DE2i-150 Win7 User Manual, Document Version 1.0, 2014.
[31] MTLC相機及顯示模組網址,URL:http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=Taiwan&CategoryNo=85&No=901
[32] Terasic Corporation, MTLC_User_Manual, Document Version 1.0, 2014.
[33] S. Suranthiran and S. Jayasuriya, “Effective Fusion of Distorted Multi-sensor Data,” in Proc. Intelligent Control, 2003, pp. 444-449.
[34] Z. Junhua1 and Wangwei, “The Extraction of Fractional-order Curvature Attributes and Applications in the Structure Interpretation,” in Proc. Artificial Intelligence and Computational Intelligence, 2000, pp. 123–126.