研究生: |
江秉益 Jiang, Ping-Yi |
---|---|
論文名稱: |
二維有機-無機混成半導體中的自旋極化光致放光光譜 Spin-Polarization Photoluminescence Spectroscopy in Two-Dimensional Organic-Inorganic Hybrid Semiconductors |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
劉沂欣
Liu, Yi-Hsin 藍彥文 Lan, Yann-Wen 范秀芳 Fan, Hsiu-Fang 楊承山 Yang, Chan-Shan 賴育英 Lai, Yu-Ying |
口試日期: | 2023/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 二維材料 、對稱性下降 、自旋軌道作用 、磁場效應 、塞曼效應 、偏振光 |
英文關鍵詞: | Two-dimensional materials, Symmetry broken, Spin-orbit coupling, Zeeman effect, Spin polarization, Magnetic field effect |
研究方法: | 實驗設計法 、 現象學 |
DOI URL: | http://doi.org/10.6345/NTNU202301551 |
論文種類: | 學術論文 |
相關次數: | 點閱:151 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中透過合成一系列具備強量子侷限的II-VI族的有機-無機層狀奈米片。奈米片本身為兩個原子厚度的無機層,並將各個無機單層透過雙牙基胺配體以共價鍵互相連接,配體亦可作為介電絕緣層將將電子限制於平面內。吸收光譜中觀察到的吸收出現巨大的藍移以及C3v的對稱性為二維形貌的固有性質。透過摻雜過渡金屬我們在材料中引入與摻雜雜質的自旋-軌道相互作用以及額外的光學活性,在C3v的對稱性下材料理論上會因為簡併性被打破進而產生更大的賽曼分裂,錳本身特殊的自旋躍遷機制以及長半生期的磷光放光都使摻雜錳的寬帶系半導體在低溫下以及在磁場中出現特殊的磁光現象,我們透過與物理系合作嘗試了解這些現象,並透過光學元件的設計,嘗試探討這些現象背後的作用的機制。
In this work, a series of II-VI group organic-inorganic layered nanosheets with strong quantum confinement were synthesized. The nanosheet itself has a two-atom-thick inorganic layer that can be called a monolayer, and each inorganic monolayer is covalently bonded through a diamine ligand. The ligand can also serve as an insulating layer to confine electrons. in the plane. The large blue shift observed in the absorption spectrum and the symmetry of C3v are intrinsic properties of the two-dimensional topography. By doping transition metals, we can introduce additional spin-orbit interactions and additional optical activity. Under the symmetry of C3v, the material will theoretically have giant Zeeman splitting, the special spin transition mechanism of manganese itself and the phosphorescence emission with long lifetime makes the manganese-doped wide-band gap semiconductor exhibit special optical phenomena at low temperature and in a magnetic field. Through cooperation with the Department of Physics, we try to measure the spin-dependent photoluminescence spectrum of manganese, and anomalies are observed and attempts are made to explore the reasons behind these phenomena.
Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A., From 1D Chain to 3D Network: Tuning Hybrid II-VI Nanostructures and Their Optical Properties. Journal of the American Chemical Society 2003, 125 (23), 7049-7055.
Huang, X.; Li, J.; Fu, H., The First Covalent Organic−Inorganic Networks of Hybrid Chalcogenides: Structures That May Lead to a New Type of Quantum Wells. Journal of the American Chemical Society 2000, 122 (36), 8789-8790.
Li, J.; Zhang, R., Nanostructured Inorganic-Organic Hybrid Semiconductor Materials. Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications 2013, 2, 375-415.
Lu, J.; Wei, S.; Yu, W.; Zhang, H.; Qian, Y., Structure and Luminescence of 2D Dilute Magnetic Semiconductors: Cd1-xMnxSe·L0.5 (L = Diamines). Chemistry of Materials 2005, 17 (7), 1698-1703.
Justice Babu, K.; Kaur, G.; Shukla, A.; Kaur, A.; Goswami, T.; Ghorai, N.; Ghosh, H. N., Concurrent Energy- and Electron-Transfer Dynamics in Photoexcited Mn-Doped CsPbBr3 Perovskite Nanoplatelet Architecture. The Journal of Physical Chemistry Letters 2021, 12 (1), 302-309.
Dutta, T.; Kashid, S. M.; Hooda, R.; Sheikh, T.; Chowdhury, A.; Nag, A., Edge versus Interior Mn2+ Doping in 2D Layered Butylammonium Lead Bromide Perovskite Single Crystals. The Journal of Physical Chemistry C 2022, 126 (49), 21109-21116.
Proshchenko, V.; Dahnovsky, Y., Tunable Luminescence in CdSe Quantum Dots Doped by Mn Impurities. The Journal of Physical Chemistry C 2014, 118 (48), 28314-28321.
K. R., P.; Viswanatha, R., Mechanism of Mn emission: Energy transfer vs charge transfer dynamics in Mn-doped quantum dots. APL Materials 2020, 8 (2).
Yang, X.; Pu, C.; Qin, H.; Liu, S.; Xu, Z.; Peng, X., Temperature- and Mn2+ Concentration-Dependent Emission Properties of Mn2+-Doped ZnSe Nanocrystals. Journal of the American Chemical Society 2019, 141 (6), 2288-2298.
Bradshaw, L. R.; May, J. W.; Dempsey, J. L.; Li, X.; Gamelin, D. R., Ferromagnetic excited-state Mn${}^{2+}$ dimers in Zn${}_{1\ensuremath{-}x}$MnxSe quantum dots observed by time-resolved+2magnetophotoluminescence. Physical Review B 2014, 89 (11), 115312.
Kliem, W.; Lehmann, G., A reassignment of the optical absorption bands in biotites. Physics and Chemistry of Minerals 1979, 4 (1), 65-75.
Ohno, Y.; Young, D. K.; Beschoten, B.; Matsukura, F.; Ohno, H.; Awschalom, D. D., Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999, 402 (6763), 790-792.
Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R., Mn2++-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics. Advanced Functional Materials 2008, 18 (24), 3873-3891.
Zhang, K.; Zhao, J.; Hu, Q.; Yang, S.; Zhu, X.; Zhang, Y.; Huang, R.; Ma, Y.; Wang, Z.; Ouyang, Z.; Han, J.; Han, Y.; Tang, J.; Tong, W.; Zhang, L.; Zhai, T., Room-Temperature Magnetic Field Effect on Excitonic Photoluminescence in Perovskite Nanocrystals. Advanced Materials 2021, 33 (30), 2008225.
Chen, J.-Y.; Wong, T.-M.; Chang, C.-W.; Dong, C.-Y.; Chen, Y.-F., Self-polarized spin-nanolasers. Nat Nanotechnol 2014, 9 (10), 845-850.
Nishizawa, N.; Nishibayashi, K.; Munekata, H., Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proceedings of the National Academy of Sciences 2017, 114 (8), 1783-1788.
Barrows, C. J.; Vlaskin, V. A.; Gamelin, D. R., Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd1–xMnxSe Quantum Dots. The Journal of Physical Chemistry Letters 2015, 6 (15), 3076-3081.
Buck, J. T.; Mani, T., Magnetic Control of Recombination Fluorescence and Tunability by Modulation of Radical Pair Energies in Rigid Donor–Bridge–Acceptor Systems. Journal of the American Chemical Society 2020, 142 (49), 20691-20700.
Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H.-K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S.-J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped
Semiconductor: Mn2+-Doped (CdSe)13 Clusters. Journal of the American Chemical Society 2015, 137 (40), 12776-12779.
Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H., Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. Journal of the American Chemical Society 2020, 142 (49), 20616-20623.
Barrows, C. J.; Fainblat, R.; Gamelin, D. R., Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities. Journal of Materials Chemistry C 2017, 5 (21), 5232-5238.
Muckel, F.; Delikanli, S.; Hernández-Martínez, P. L.; Priesner, T.; Lorenz, S.; Ackermann, J.; Sharma, M.; Demir, H. V.; Bacher, G., sp–d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets. Nano Letters 2018, 18 (3), 2047-2053.
Ning, J.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L., Phase-Dependent Shell Growth and Optical Properties of ZnSe/ZnS Core/Shell Nanorods. Chemistry of Materials 2021, 33 (9), 3413-3427.
Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-Dimensional Colloidal Nanocrystals. Chemical Reviews 2016, 116 (18), 10934-10982.
Wei, S.; Lu, J.; Qian, Y., Density Functional Study of 2D Semiconductor CdSe·hda0.5 (hda = 1,6-hexanediamine) and Its Excitonic Optical Properties. Chemistry of Materials 2008, 20 (23), 7220-7227.
Fu, H.; Li, J., Density-functional study of organic–inorganic hybrid single crystal ZnSe(C2H8N2)1/2. The Journal of Chemical Physics 2004, 120 (14), 6721-6725.
Zhang, Y.; Zheng, S.; Sun, X.; Zhang, W., Strong excitonic effect in organic–inorganic hybrid crystals. Solid State Communications 2012, 152 (14), 1259-1262.
Mueller, T.; Malic, E., Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Materials and Applications 2018, 2 (1), 29.
Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 2011, 83 (12), 2213-2228.
Wang, H.; Gao, J.; Zhang, M.; Liu, P.; Guo, Y.; Li, H.; Zhao, G.; Hu, S.; Cheng, Z.; Zang, J.; Wen, R.; Liu, T.; Tong, Y.; Sun, Z.; Wang, H., ZnSe/ZnS Core–Shell Quantum Dots Doped with Mn2+ Ions for Magnetic State-Manipulated Light Sources. ACS Applied Nano Materials 2022, 5 (6), 8448-8456.
Liu, Y.; Zhang, J.; Han, B.; Wang, X.; Wang, Z.; Xue, C.; Bian, G.; Hu, D.; Zhou, R.; Li, D.-S.; Wang, Z.; Ouyang, Z.; Li, M.; Wu, T., New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors. Journal of the American Chemical Society 2020, 142 (14), 6649-6660.
Gumlich, H. E., Electro- and photoluminescence properties of Mn2+ in ZnS and ZnCdS. Journal of Luminescence 1981, 23 (1), 73-99.
Hemstreet, L. A., Trends in the electronic properties of substitutional $3d$ transition-metal impurities in GaAs. Physical Review B 1980, 22 (10), 4590-4599.
Huong, N. Q., Chapter 3 - Mn2+ Emission in Mn-Doped Quantum Dots. In Nano-Sized Multifunctional Materials, Hong, N. H., Ed. Elsevier: 2019; pp 47-71.
Ito, H.; Takano, T.; Kuroda, T.; Minami, F.; Akinaga, H., Two-dimensional confinement effect on Mn2+ intraionic transition. Journal of Luminescence 1997, 72-74, 342-343.
Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J., Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+. The Journal of Physical Chemistry 1996, 100 (11), 4551-4555.
Sun, Q.; Wang, S.; Zhao, C.; Leng, J.; Tian, W.; Jin, S., Excitation-Dependent Emission Color Tuning from an Individual Mn-Doped Perovskite Microcrystal. Journal of the American Chemical Society 2019, 141 (51), 20089-20096.
Sreenan, B.; Lee, B.; Wan, L.; Zeng, R.; Zhao, J.; Zhu, X., Review of Mn-Doped Semiconductor Nanocrystals for Time-Resolved Luminescence Biosensing/Imaging. ACS Applied Nano Materials 2022, 5 (12), 17413-17435.
Shrestha, S.; Wang, B.; Dutta, P., Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science 2020, 279, 102162.
Mondal, P.; Sathiyamani, S.; Gahlot, K.; Viswanatha, R., Is the Lack of Orange Emission Infallible Proof of Unsuccessful Doping of Mn in Quantum Dots? The Journal of Physical Chemistry C 2021, 125 (20), 11007-11013.
Pinchetti, V.; Moro, F.; Zhang, B.; Fanciulli, M.; De Trizio, L.; Meinardi, F.; Manna, L.; Brovelli, S., Magnetic Transitions and Energy Transfer Processes in Sb-Based Zero-Dimensional Metal Halide Nanocrystals Doped with Manganese. ACS Energy Letters 2022, 7 (4), 1566-1573.
Ha, S. K.; Shcherbakov-Wu, W.; Powers, E. R.; Paritmongkol, W.; Tisdale, W. A., Power-Dependent Photoluminescence Efficiency in Manganese-Doped 2D Hybrid Perovskite Nanoplatelets. ACS Nano 2021, 15 (12), 20527-20538.
Beaulac, R.; Schneider, L.; Archer, P. I.; Bacher, G.; Gamelin, D. R., Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots. Science 2009, 325 (5943), 973-976.
Zhang, Y.; Dalpian, G. M.; Fluegel, B.; Wei, S. H.; Mascarenhas, A.; Huang, X. Y.; Li, J.; Wang, L. W., Novel approach to tuning the physical properties of organic-inorganic hybrid semiconductors. Phys Rev Lett 2006, 96 (2), 026405.
Pandya, R.; Steinmetz, V.; Puttisong, Y.; Dufour, M.; Chen, W. M.; Chen, R. Y. S.; Barisien, T.; Sharma, A.; Lakhwani, G.; Mitioglu, A.; Christianen, P. C. M.; Legrand, L.; Bernardot, F.; Testelin, C.; Chin, A. W.; Ithurria, S.; Chamarro, M.; Rao, A., Fine Structure and Spin Dynamics of Linearly Polarized Indirect Excitons in Two-Dimensional CdSe/CdTe Colloidal Heterostructures. ACS Nano 2019, 13 (9), 10140-10153.
Wang, F.; Wang, Y.; Liu, Y.-H.; Morrison, P. J.; Loomis, R. A.; Buhro, W. E., Two-Dimensional Semiconductor Nanocrystals: Properties, Templated Formation, and Magic-Size Nanocluster Intermediates. Accounts of Chemical Research 2015, 48 (1), 13-21.
47. Qian, X.; Gu, X.; Yang, R., Anisotropic Thermal Transport in Organic–Inorganic Hybrid Crystal β-ZnTe(en)0.5. The Journal of Physical Chemistry C 2015, 119 (51), 28300-28308.
Hao, J.; Zhao, F.; Wang, Q.; Lin, J.; Chen, P.; Li, J.; Zhang, D.; Chen, M.; Liu, P.; Delville, M.-H.; He, T.; Cheng, J.; Li, Y., Optically Active CdSe/CdS Nanoplatelets Exhibiting Both Circular Dichroism and Circularly Polarized Luminescence. Advanced Optical Materials 2021, 9 (20), 2101142.
Diroll, B. T.; Guzelturk, B.; Po, H.; Dabard, C.; Fu, N.; Makke, L.; Lhuillier, E.; Ithurria, S., 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023, 123 (7), 3543-3624.
Cao, J.; Jiang, Z.-J., Thickness-dependent Shell Homogeneity of ZnSe/CdSe Core/Shell Nanocrystals and Their Spectroscopic and Electron- and Hole-transfer Dynamics Properties. The Journal of Physical Chemistry C 2020, 124 (22), 12049-12064.
Nadtochenko, V.; Cherepanov, D.; Kochev, S.; Motyakin, M.; Kostrov, A.; Golub, A.; Antonova, O.; Kabachii, Y.; Rtimi, S., Structural and optical properties of Mn2+-doped ZnCdS/ZnS core/shell quantum dots: New insights in Mn2+ localization for higher luminescence sensing. Journal of Photochemistry and Photobiology A: Chemistry 2022, 429, 113946.
Ghosh Chaudhuri, R.; Paria, S., Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews 2012, 112 (4), 2373-2433.
Lin, F.; Lai, Z.; Zhang, L.; Huang, Y.; Li, F.; Chen, P.; Wang, Y.; Chen, X., Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchimica Acta 2019, 187 (1), 66.
Li, D.; Li, X.; Zhao, T.; Liu, H.; Jiang, S.; Zhang, Q.; Ågren, H.; Chen, G., Ultraefficient Singlet Oxygen Generation from Manganese-Doped Cesium Lead Chloride Perovskite Quantum Dots. ACS Nano 2020, 14 (10), 12596-12604.
Ando, M.; Kawasaki, H.; Tamura, S.; Haramoto, Y.; Shigeri, Y. Recent Advances in Gas Sensing Technology Using Non-Oxide II-VI Semiconductors CdS, CdSe, and CdTe Chemosensors [Online], 2022.
Lin, F.; Li, F.; Lai, Z.; Cai, Z.; Wang, Y.; Wolfbeis, O. S.; Chen, X., MnII-Doped Cesium Lead Chloride Perovskite Nanocrystals: Demonstration of Oxygen Sensing Capability Based on Luminescent Dopants and Host-Dopant Energy Transfer. ACS Applied Materials & Interfaces 2018, 10 (27), 23335-23343.
Ricciarelli, D.; Meggiolaro, D.; Belanzoni, P.; Alothman, A. A.; Mosconi, E.; De Angelis, F., Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites. ACS Energy Letters 2021, 6 (5), 1869-1878.
Halder, O.; Satpati, B.; Rajput, P.; Mohapatra, N.; Jha, S. N.; Suffczyński, J.; Pacuski, W.; Rath, S., Light Emitting Spin Active Electronic States in Ultra-Thin Mn Doped CdSe Layered Nanosheets. Scientific Reports 2019, 9 (1), 1804.
Nadtochenko, V.; Kostrov, A.; Titov, A.; Aybush, A.; Gostev, F.; Shelaev, I.; Shepel, D.; Antonova, O.; Kochev, S.; Kabachii, Y., Multiexponential dynamics of Mn2+(3d5) excitation in manganese doped ZnCdS quantum dots: Stimulated emission band in femtosecond transient spectra reveals ultrafast nonradiative energy transfer to Mn2+(3d5). Chemical Physics Letters 2020, 743, 137160.