研究生: |
Tran The Dung Tran The Dung |
---|---|
論文名稱: |
Geometric flows for elastic functionals of curves and the applications Geometric flows for elastic functionals of curves and the applications |
指導教授: |
林俊吉
Lin, Chun-Chi |
口試委員: |
林俊吉
Lin, Chun-Chi 司靈得 Spector, Daniel 孟悟理 Ulrich Menne 崔茂培 Tsui, Mao-Pei 蔡東和 Tsai, Dong-Ho 謝明修 Hsieh, Min-Hsiu |
口試日期: | 2022/06/24 |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 167 |
英文關鍵詞: | Geometric flow, elastic flow, fourth-order parabolic equation, second-order parabolic equation, elastic spline, spline interpolation, curve fitting, path planning, free boundary problem, contact angles, Holder spaces |
研究方法: | Theorical research |
DOI URL: | http://doi.org/10.6345/NTNU202200953 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, the method of geometric flow is applied to prove the existence of global solutions to the problem of nonlinear spline interpolations for closed/non-closed curves and the problem of area-constrained planar elasticae with free boundaries on a straight line. Among them, this method applies the theory of either fourth-order parabolic PDEs/PDE or second-order parabolic PDEs/PDE with certain imposed boundary conditions. The results of this study demonstrate the existence of global solutions and sub-convergence of the elastic flow. Furthermore, the geometric flow method provides a new approach to the problem of nonlinear spline interpolations.
[1] H. Abels and J. Butz, A Blow-up Criterion for the Curve Diffusion Flow with a Contact Angle, SIAM J. Math. Anal. 52, 3 (2020), 2592--2623.
[2] G. Arreaga, R. Capovilla, C. Chryssomalakos and J. Guven, Area-constrained planar elastica, Physical Review E., Volume 65, 031801 (2002).
[3] T. Au, and T. Y. Wan, Analysis on an ODE arisen from studying the shape of a red blood cell, J. Math. Anal. Appl., 282, 1 (2003), 279--295.
[4] J. W. Barrett, H. Garcke and R. Nurnberg, Elastic flow with junctions: Variational approximation and applications to nonlinear splines, Math. Models Methods Appl. Sci. 22, 11 (2012), 1250037.
[5] A. Borbely and M. J. Johnson, Elastic splines I: Existence, Constr. Approx. 40, 2 (2014), 189--218.
[6] A. Borbely and M. J. Johnson, Elastic splines II: Unicity of optimal s-curves and curvature continuity, Constr. Approx. 49, 3 (2019), 525--554.
[7] R. Capovilla, C. Chryssomalakos and J. Guven, Elastica hypoarealis, The European Physical Journal B - Condensed Matter and Complex Systems 29 (2002), 163--166.
[8] A. Dall'Acqua, C.-C. Lin, and P. Pozzi, Evolution of open elastic curves in R^n subject to fixed length and natural boundary conditions, Analysis (Berlin), 34, 2 (2014), 209--222.
[9] A. Dall'Acqua, C.-C. Lin and P. Pozzi, A gradient flow for open elastic curves with fixed length and clamped ends. Ann. Sc. Norm. Super. Pisa Cl. 17, 5 (2017), 1031--1066.
[10] A. Dall'Acqua, C.-C. Lin and P. Pozzi, Flow of elastic networks: long time existence results, Geom. Flows, 4 (2019), 83--136.
[11] A. Dall'Acqua, C.-C. Lin and P. Pozzi, Elastic flow of networks: short-time existence result, J. Evol. Eq. 21 (2021), 1299--1344.
[12] A. Dall'Acqua, C.-C. Lin and P. Pozzi, Argument for the extension of the special geometric solution (SGS), (Preprint 2021).
[13] A. Dall'Acqua and P. Pozzi, A Willmore-Helfrich L^2-flow of curves with natural boundary conditions, Comm. Anal. Geom. 22, 2 (2014), no. 4, 617--669. MR 3263933.
[14] A. Dall'Acqua and A. Spener, The elastic flow of curves in the hyperbolic plane. Preprint, arXiv:1710.09600 (2017).
[15] D. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18 (1983), 157--162. (Improved version), in Collected Papers on Ricci Flow, H.D. Cao, B. Chow, S.C. Chu and S.T. Yau, editors, Series in Geometry and Topology, 37 Int. Press (2003), 163--165.
[16] J. P. Dix, Existence of the limit at infinity for a function that is integrable on the half line, RHIT Undergrad. Math. J., 14, 1 (2013).
[17] G. Dziuk, E. Kuwert and R. Schatzle, Evolution of elastic curves in R^n existence and computation, SIAM J. Math. Anal. 33, 5 (2002), 1228--1245.
[18] H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn- Hilliard equations, Adv. Differential Equations, 5 (2000), no. 4-6, 401--434. MR 1750107.
[19] M. Giaquinta, G. Modica, and J. Soucek, Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 37. Springer-Verlag, Berlin, 1998.
[20] M. Golomb and J. Jerome, Equilibria of the curvature functional and manifolds of nonlinear interpolating spline curves, SIAM J. Math. Anal. 13, 3 (1982), 421--458.
[21] M. Gosswein, J. Menzel and A. Pluda, Existence and uniqueness of the motion by curvature of regular networks. Preprint, arXiv:2003.09962 (2020).
[22] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306.
[23] W. Han and E. Jou, On the computation of minimal-energy splines: convergence analysis. Appl. Math. Comput. 47, 1 (1992), 1--13.
[24] W. Helfrich, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments, Z. Naturforsch C 28 (1973), 693--703.
[25] J. W. Jerome, Smooth interpolating curves of prescribed length and minimum curvature, Proc. Amer. Math. Soc. 51, 1 (1975), 62--66.
[26] M. J. Johnson and H. S. Johnson, A constructive framework for minimal energy planar curves, Appl. Math. Comput. 276 (2016), 172--181.
[27] E. D. Jou and W. Han, Minimal-energy splines. I. Plane curves with angle constraints, Math. Methods Appl. Sci. 13, 4 (1990), 351--372.
[28] W. Kuhnel, Differential Geometry. Curves Surfaces Manifolds, translated from the 1999 German original by Bruce Hunt 2nd edition, Stud. Math. Libr., vol. 16, American Mathematical Society, Providence, RI, 2006.
[29] J. Langer and D. A. Singer, Lagrangian aspects of the Kirchhoff elastic rod, SIAM Rev. 38, 4 (1996), 605--618.
[30] E. H. Lee and G. E. Forsythe, Variational study of nonlinear spline curves, SIAM Rev. 15, 1 (1973), 120--133.
[31] P. Li, and S.T. Yau, A new conformal invariant and its application to the Willmore conjecture and the first eigenvalue of compact surfacesInvent. Math. 69 (1982), 269--291.
[32] C.-C. Lin, L^2-flow of elastic curves with clamped boundary conditions, J. Diff. Eq. 252, 12 (2012), 6414--6428.
[33] C.-C. Lin, Y.-K. Lue and H. R. Schwetlick, The second-order L^2-flow of inextensible elastic curves with hinged ends in the plane. J. Elast. 119, 2 (2015), 263--291.
[34] C.-C. Lin, Y.-K. Lue and D. T. Tran, A second-order elastic flow for path planning in $\mathbb{R}^2$, submitted to CCM.
[35] C.-C. Lin, H. R. Schwetlick and D. T. Tran, An elastic flow for nonlinear spline interpolations in R^n. Tran. Amer. Math. Soc. 375, 7 (2022), 4893–4942.
[36] C. Mantegazza, Lecture Notes on Mean Curvature Flow, vol. 290 of Progress in Mathematics. Birkhauser Basel, 2011.
[37] M. Moll and L. E. Kavraki, Path Planning for Variable Resolution Minimal-Energy Curves of Constant Length, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2142--2147, 2005.
[38] A. Polden, Curves and surfaces of least total curvature and fourth-order flows, Ph.D. dissertation, Universitat Tubingen, Tubingen, Germany, 1996.
[39] L. Simon, Existence of Willmore surfaces Miniconference on Geometry and Partial Differential Equations (Canberra 1985), Proceedings of Centre Mathematical Analysis, 10, Australian National University, Canberra (1986), 187--216.
[40] V. A. Solonnikov, Boundary value problems of mathematical physics. III, proceedings of the steklov institute of mathematics, no. 83 (1965), Amer. Math. Soc., Providence.
[41] M. E. Taylor, Partial differential equations I. Basic theory, Applied Mathematical Sciences, 115, Second Edition, Springer, New York, 2011.
[42] G. Wheeler and V. M.Wheeler, Curve diffusion and straightening flows on parallel lines. RIMS Kokyuroku (2017), 2046: 60--68. http://hdl.handle.net/2433/237016.
[43] T.J. Willmore, Riemannian Geometry, Clarendon, Oxford (1993).