研究生: |
王勝均 Sheng-Jun Wang |
---|---|
論文名稱: |
應用於停車場之動態車牌定位系統 Dynamic License Plate Localization System Applied to Parking Lots |
指導教授: |
葉榮木
Yeh, Zong-Mu 蔡俊明 Tsai, Chun-Ming |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 背景相減 、佈線演算法 、車牌偵測 、車牌定位 、Sobel邊緣偵測 |
英文關鍵詞: | Background Subtraction, Line-Arrangement Algorithm, License Plate Detection, License Plate Localization, Sobel Edge Detection |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於商業的發展與交通的便利,人們對於車輛的需求增多;隨著車輛數目不斷上升,卻引發了一連串的交通問題。既然車輛數目如此繁多,失竊案件也頻有所聞,而停車場為容易發生竊盜地點之一。因此,如何利用電腦化系統取代人力,來做好停車場的管理是當前最重要的課題。
本文提出一套適用於停車場且能夠動態偵測出車牌的方法,包含「移動物偵測模組」、「車牌定位模組」兩大子系統,目的為解決在光線不穩定的環境條件下,不易偵測車牌的情形。系統首先利用移動物偵測模組中的跳躍式背景相減法,將影像序列編號奇數的圖框(Frame)兩兩相減;考慮車牌出現的幾何位置之後,把疑似車牌所在區塊座標,標記在編號偶數張的圖框上;接著,再利用車牌定位模組裡的掃描灰階變異取得次候選區,透過Sobel的垂直邊緣偵測來保留疑似車牌字元的部份區塊。最後,再利用「佈線演算法」和搭配車牌特徵,找出更精確的車牌位置。
為了驗證此方法,測試的資料庫包括了室外各種天氣如晴天、陰天與雨天以及室內的動態車輛影片。地點為台灣師大的地下停車場及大安森林公園停車場。經由實驗的結果,車牌的正確偵測率高達91.07%,平均處理每張圖框的時間為191ms。
In recent years, due to the development of the business and the convenience of the traffic, people require more and more cars. As the increase of cars, it brings a series of traffic problems. Since there are numerous cars, the cases of larceny come up frequently, and the parking lots is one of the places that the thefts easier happen. Hence, how to utilize computer systems to replace manpower to manage parking lots well is a very important topic at present.
This paper has proposed a dynamic license plate detection approach that suits parking lots, including two sub-systems, “Motion Detection Module” and “License Plate Localization Module.” The objective is to solve the problem that license plates are not easy to be detected under the uneven lighting conditions. First, the system uses the jump-background-subtraction of the Motion Detection Module to subtract both odd frames in the image sequences. To consider the geometric location that license plates appear, we determine the suspect location coordinates and label on the even frames. Then, to use the scanning-gray-level-variation inside License Plate Localization Module to get the second candidates, next, make use of the vertical Sobel edge detection to reverse the characters area of suspect license plate. At last, to exploit “Line-Arrangement Algorithm” and license plate features to find out the precise license plate location.
In order to demonstrate this approach, the test data includes indoor and outdoor dynamic films. (The outdoor weather includes sunny, cloudy, and rainy). And the experimental places are the underground parking lots of NTNU and the parking lots at the Da-An park. Via the result of the experiments, the accurate rate of detecting license plates is high as 91.07%, and the average of processing time is 191 ms per frame.
[1] Hongliang Bai, Junmin Zhu, and Changping Liu, “A Fast License Plate Extraction Method on Complex Background,” Intelligent Transportation Systems, IEEE Proceedings. Volume 2, 12-15 Page(s):985-987, Oct. 2003.
[2] Hongliang Bai and Changping Liu, “A Hybrid License Plate Extraction Method Based on Edge Statistics and Morphology,” Pattern Recognition, ICPR 2004. Proceedings of the 17th International Conference on Volume 2, Page(s):831-834 Vol.2, 23-26 Aug. 2004.
[3] Jun Kong, Xinyue Liu, Yinghua Liu, and Xiaofeng Zhou, “A Novel License Plate Localization Method Based on Textural Feature Analysis,” Signal Processing and Information Technology, Proceedings of the 5th IEEE Internal Symposium on, Page(s):275-279, 18-21 Dec. 2005.
[4] Premnath Dubey, “Heuristic Approach for License Plate Detection,” Advanced Video and Signal Based Surveillance, AVSS 2005. IEEE Conference on, Page(s):366-370, 15-16 Sept. 2005.
[5] P.V. Suryanarayana, Suman K. Mitra, Asim Banerjee and Anil K. Roy, “A Morphology Based Approach for Car License Plate Extraction,” INDICON, Annual IEEE, Page(s):24-27, 1-13 Dec. 2005.
[6] Yungang Zhang, Changshui Zang, “A New Algorithm for Character Segmentation of License Plate,” Intelligent Vehicles Symposium, IEEE Proceedings, Page(s):106-109, 9-11 June 2003.
[7] 余忠潔,「新的車牌定位方法」,靜宜大學資訊管理研究所,2002。
[8] Danian Zheng, Yannan Zhao, Jiazin Wang, “An Efficient Method of License Plate Location,” Pattern Recognition Letters 26, Page(s): 2431-2438, 2005.
[9] 謝君偉教授,多媒體實驗室車牌資料庫。
http://mmplab.eed.yzu.edu.tw/index.html
[10] R.C Gonzalez and R.E Woods. Digital Image Processing. 2nd Ed. Prentice-Hall, N.J, 2002.
[11] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, “Morphology-based License Plate Detection from Complex Scenes,” Pattern Recognition, 16th International Conference on, Page(s):176-179, 2002.
[12] M. Raus, L. Kreft, “Reading Car License Plates by the use of Artificial Neural Networks,” Circuits and Systems, Proceedings of the 38th Midwest Symposium on Volume 1, Page(s):538-541 vol.1, 13-16 Aug. 1995.
[13] 陳麗奾,「在未設限環境下車牌的定位與辨識」,國立台灣師範大學資訊教育研究所,1999。
[14] Stefano Rovetta, Rodolfo Zunino, “License Plate Localization by Using Vector Quantization,” International Conference on Acoustics, Speech and Signal Processing, 1999.
[15] Eun Ryung Lee, Pyeoung Kee Kim, Hang Joon Kim, “Automatic Recognition of a Car License Plate Using Color Image Processing,” Proceeding of International Conference on Image Processing, Page(s):62-66, 1994.
[16] Xu Jianfeng, Li Shaofa, Chen Zhibin, Robotics, “Color Analysis for Chinese Car Plate Recognition,” Intelligent Systems and Signal Processing, IEEE International Conference on Volume 2, Page(s):1312-1316 vol.2, 8-13 Oct. 2003.
[17] K. M. Kim, B. J. Lee, K. Lyou, and G. T. Park, “The Automatic Recognition of the Plate of Vehicle Using the Correlation Coefficient and Hough Transform,” Journal of Control, Automation and System Engineering, Page(s):511-519, 1997.
[18] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing,” 台灣培生教育出版股份有限公司,2003。
[19] 黃泰祥,「具備人臉追蹤與辨識功能的一個智慧型數位監視系統」,私立中原大學電子工程學系碩士論文,2004。
[20] 鐘國亮,「影像處理與電腦視覺」,台灣東華書局股份有限公司,2004。
[21] Xu Hong-ke, Yu Fu-hua, Jiao Jia-hua, Song Huan-sheng, “A New Approach of the Vehicle License Plate Location,” Parallel and Distributed Computing, Applications and Technology, Sixth International Conference on ,Page(s):1055-157, 05-08 Dec. 2005.
[22] Sunghoon Kim, Daechul Kim, Younbox Ryu, Gyeonghwan Kim, “A Robust License-Plate Extraction Method under Complex Image Conditions,” Pattern Recognition, Proceedings. 16th International Conference on Volume 3, Page(s):216-219 vol.3, 11-15 Aug. 2002.
[23] Seiki Yoshimori, Yasue Mitsukura, Minoru Fukumi, Norio Akamatsu, Rajiv Khosal, “License Plate Detection System in Rainy Days,” Computational Intelligence in Robotics and Automation, Proceedings. 2003 IEEE International Symposium on Volume 2, Page(s):972-976, 16-20 July 2003.
[24] R. Bremannanth, A. Chitra, V. Seetharaman, V.S.L. Nathan, “A Robust Video Based License Plate Recognition System,” Intelligent Sensing and Information Processing, Proceeding of 2005 International Conference on, Page(s):175-180, 4-7 Jan. 2005.
[25] 鄭則謙,「車庫入侵者偵測與分類」,台北市立教育大學數學資訊教育研究所,2006。
[26] Xiaobo Lu, Guanghua, Bin Liu, “Localization of Vehicle License Plate Based on Gray Level Variation,” ITS Telecommunications Proceedings, 6th International Conference on, Page(s):1220-1223, June 2006.