簡易檢索 / 詳目顯示

研究生: 呂彥槿
論文名稱: 壓電式力量感測器之適應性低頻特性補償
Adaptive Low-Frequency Characteristic Compensation of Piezoelectric Force Sensor
指導教授: 呂有勝
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 受力量測力量估測適應性法則壓電式力量感測器
英文關鍵詞: one-dimensional linear platform.
DOI URL: http://doi.org/10.6345/NTNU201901093
論文種類: 學術論文
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的是藉由適應性估測方式補償壓電式 (piezoelectric) 力量感測器的低頻失真,以得到系統的實際低頻受力。相較於先前的研究,本研究的特點在於不改感測器結構設計的前提下,藉由適應性法則估測系統之低頻受力和干擾,其中包含了系統的未知和不確定性部分,並進一步藉由低通濾波的方式,以減少加速度和速度訊號的使用,估測出系統的受力。
    實驗平台是由實驗室成員合力設計和組裝之一維線性馬達實驗平台,控制核心使用美國德州儀器公司(Texas Instruments, TI)生產之TMS320C6713 DSP開發板,搭配實驗室成員所自行研發、具備FPGA等IC之擴充子板。於FPGA方面,以VHSIC (Very High Speed Integrated Circuit) 硬體描述語言(VHDL)撰寫編碼器、ADC與DAC等周邊界面訊息處理函式;而在控制法則實現上,以C/C++撰寫控制器程式並由TI提供的Code Composer Studio (CCS)發展控制程式。實驗結果顯示,本研究提出之方法能有效改善壓電式感測器低頻量測失準現象,準確地量出其正確的受力,並且能減少系統複雜度、降低系統所需的成本和空間。

    This research presents a scheme to adaptively estimate the applied force on a linear experimental platform. Strain gauge force sensors and piezoelectric force sensors are two commonly used force sensors in modern industry. The piezoelectric force sensors are widely used to measure forces because of their high sensitivity, high stiffness, and a wide dynamic range. However, if the applied force is static or has a very low-frequency, the charge generated by the piezoelectric quartz will gradually decay to zero. So it is unable to measure low-frequency components of an external force. Compared to the piezoelectric force sensors, the strain gauge force sensors, commonly used to measure static forces, are based on the deformation by themselves, so that they can measure both static and dynamic forces. But the strain gauge force sensors also have some disadvantages, such as large size, low stiffness, and tedious calibration.
    This research proposes an adaptive algorithm for estimating low-frequency force to compensate for the low-frequency deficiency of the piezoelectric force sensors and the disturbances of the system. Different from the traditional methods that modify sensors' mechanical structures, a commercially available piezoelectric force sensor provides force data for an adaptive algorithm which can estimate force precisely, including low-frequency range. Furthermore, by using the low-pass filtering, the requirements of the acceleration and speed signals can be relaxed, so it can reduce the system’s cost and the required space.
    The experimentation is carried out using TSM320C6713 DSP with a daughter board, that includes FPGA, DAC, and ADC. The FPGA is configured using the VHSIC hardware description languages to implement data acquisition and storage. The Code Composer Studio programs developed by Texas Instruments is an effective tool for developing C/C++ programs for the control algorithm. The sampling rate of DSP is equal to 11 kHz, and a real-time control system is achieved. Experimental results show the effectiveness of the proposed scheme.

    摘 要 i ABSTRACT ii 誌 謝 iv 目錄 v 圖目錄 vii 表目錄 xii 符號說明 xv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 系統描述 6 2.1 實體實驗平台硬體架構簡介 6 2.2 訊號處理架構 11 2.3 系統之位置回授 13 2.4 擴增型加速度觀測器設計 15 2.5 系統模型描述 17 2.6 系統鑑別 17 2.7 適應性力量估測 20 第三章 一維線性平台之適應性力量估測架構 22 3.1 不使用加速度訊號之適應性力量估測 22 3.2 不使用加速度訊號之Lyapunov穩定性證明 25 3.3 只使用位置訊號的適應性力量估測 26 3.4 只使用位置訊號的Lyapunov穩定性證明 29 第四章 位置控制實驗方法與結果 31 4.1軌跡命令方式 31 4.2位置控制律形式 33 4.3力量感測器測試與力量估測參數選擇 34 4.4實驗方式 48 4.5位置控制實驗 49 4.5.1不使用力量和干擾補償之位置控制 49 4.5.2加入力量補償之位置控制 66 4.5.3加入力量與干擾補償之位置控制 83 4.6位置控制實驗結果討論 101 第五章 力量控制實驗方法與結果 102 5.1 力量控制律形式 102 5.2 力量控制實驗 104 5.2.1不使用干擾補償之力量控制 104 5.2.2加入干擾補償之力量控制 110 5.3 力量控制實驗結果討論 116 第六章 結論 117 參考文獻 118

    P. Castellini, R. Montanini, and G.M. Renel, “A new sensor for static and dynamic force measurement,” in Proceedings SPIE, pp. 1020-1026, 2002.
    J. Yuji and C. Sonoda, “A PVDF tactile sensor for static contact force and contact temperature,” in Proceedings IEEE Conference on Sensors, pp. 738-741, 2006.
    J. Volf, J. Vlček, and T. Šemnický, “The piezoelectric tactile sensor for static force measurement,” in Proceedings IMEKO World Congress, pp. 1113-1115, 2006.
    陳昱凱,壓電材料之靜態力量測研究,國立高雄應用科技大學機械與工程學系研究所,碩士論文, 2010。
    朱鳴,「壓電式動態應變測量系統低頻特性的補償研究」,傳感器技術(Journal of Transducer Technology),第24卷,12期,pp.7-9,2005。
    J. Chen and W. Cheng, “Low-frequency compensation of piezoelectric micro-vibrations test platform,” Technical Gazette, pp.1251-1258, 2016.
    J. Liu, X. Luo, J. Liu, M. Li, and L. Qin, “Development of a commercially viable piezoelectric force sensor system for static force measurement,” Measurement Science and Technology, vol. 28, no. 9, pp.1-7, 2017.
    鄭兆閔,無刷伺服馬達之改良型 PID 控制與干擾補償,國立雲林科技大學機械工程學系研究所,碩士論文,2003。
    李柏辰,加速度觀測器於線性平台之追蹤控制應用,臺灣師範大學機電科技學系研究所,碩士論文,2013。
    鄭哲偉,線性參數化伺服系統之低頻接觸力估測,臺灣師範大學機電科技學系研究所,碩士論文, 2018。
    J. Song, Y. Byun, J. Jeong, J. Kim, and B. Kang, “Experimental study on cascaded attitude angle control of a multi-rotor unmanned aerial vehicle with the simple internal model control method,” Journal of Mechanical Science and Technology 30, pp. 5167-5182, 2016.
    AJ. Fleming and K. Leang, “Integrated strain and force feedback for high performance control of piezoelectric actuators,” Sensors and Actuators A: Physical, vol. 161, issues. 1-2, pp. 256-265, 2010.
    Z. Lu, P. Chen, and W. Lin, “Force sensing and control in micromanipulation,” in Proceedings IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 36, no. 6, pp. 713-724, 2006.
    M. Rakotondrabe, C. Clevy, and P. Lutz, “Modelling and robust position/force control of a piezoelectric microgripper,” in Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering Scottsdale, pp. 39-44, 2007.

    無法下載圖示 本全文未授權公開
    QR CODE