簡易檢索 / 詳目顯示

研究生: 陳重佑
論文名稱: 不同動量打擊練習過程中的肢體動力學控制
指導教授: 黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 124
論文種類: 學術論文
相關次數: 點閱:226下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是通過肢段間互動的動力學分析,探討不同動量打擊練習過程中,外在環境的改變對肢體動力學控制的影響。以4名沒有接受過技擊運動訓練之女性大學生為實驗參加者,並依序接受演空打擊練習、零動量撞擊的打擊練習與有動量的打擊練習。並以二度空間高速攝影機與打擊力量測量系統,同步收集練習過程的三種打擊動作運動學與動力學資料。實驗的資料配合Hanavan人體肢段參數與肢段間互動的動力學模式計算,進一步獲得實驗參加者動作過程中的上肢關節控制力矩。結果發現,肘關節和肩關節的肌肉力矩除了碰撞的過程以外,有撞擊的實際打擊動作在各動作階段的肌肉工作型態均與無撞擊的演空打擊動作的肌肉工作型態相同。而影響肩關節與肘關節之慣性力矩則因為演空打擊動作的練習,獲得穩定的控制型態,並且不會因為撞擊的環境條件改變而影響此慣性力矩的型態。所以,本研究從實證的角度說明了傳統的動作教學過程,先進行動作的演空練習可以遷移到實際撞擊動作的表現。在有無動量撞擊的實際碰撞打擊練習條件下,實驗參加者出現了利用被動的外力作用--接觸力矩,對肘關節產生伸肘的作正功現象。因此,不同的動量打擊動作條件可以顯現出相同的肌肉力矩與慣性力矩特徵,而這些慣性力矩特徵相同的情況下,又能顯現出不同接觸力矩運用的現象。此外,本研究透過實驗處理的設計,在實際碰撞的動作階段引發出上臂角加速度產生的力矩,會與肩關節和肘關節的肌肉力矩共同作用行為,以抵消接觸力矩。

    關鍵詞:肢段間互動的動力學、動作控制、練習、打擊動作

    The purpose of this study was to analyze the motor control changes of limb dynamics during practice of punching, and to investigate the influences of various momentum impact conditions. Four female participants who never trained in any martial arts were asked to practice three treatments in order of none impact (arm swing), zero momentum impact (punch static target), and momentum impact (punch moving target). Peak Motus system with one high-speed video camera and two dimensions force sensors which mounted on punching target were synchronized to record and to digitize the 2D kinematics data and kinetics data respectively. Body segment parameters determined by Hanavan model were associated with kinematics data and kinetics data through the model of intersegment dynamics to calculate dynamic interactions between the upper arm and the forearm. The results showed that the characteristics of the generalized muscle torque at the shoulder joint and the elbow joint for zero momentum impact movement and momentum impact movement were similar to none impact movement except for impact phase. The practice of none impact movement induced the acquisition of the stable control pattern in motion dependent torques, and this acquired of motion dependent torques pattern was not effected by the various conditions of this experimental treatments. This result provided the illustration for the traditional motor skill coaching that arm swing practice in the beginning could transfer to the real impact conditions. In the practices of zero momentum impact movement and momentum impact movement, the contact torque occurred positive power action to extend elbow. It showed that participants learned to employ the passive contact torque to perform punching movement through practice. Therefore, the various momentum impact conditions could produce the similar characteristics for the pattern of generalized muscle torques and the pattern of motion dependent torques. And in these same actions of motion dependent torques, organism could result in quite different actions of contact torque. Moreover, this study emerged the significant function of the upper arm angular acceleration and concurred with the generalized muscle torques to employ and/or to counteract the contact torques during the impact phase through the treatments.

    Key words: intersegment dynamics, motor control, practice, punch

    中文摘要……………………………………………….I 英文摘要……………………………………………….II 謝誌……………………………………………………III 目次……………………………………………………IV 表次…………………………………………………VII 圖次…………………………………………………XII 第壹章 緒論………………………………………....1 第一節 前言……………………………………………………1 第二節 問題背景………………………………………………3 第三節 研究目的…..…………………………………………10 第四節 研究範圍……………………………………………….11 第五節 研究限制……………………………………………….12 第六節 名詞解釋與操作性定義……………………………..14 第七節 研究的重要性…………………………………….….18 第貳章 文獻探討……………………………………20 第一節 單關節運動的控制理論…………………………..…20 第二節 多關節運動的控制理論 與Bernstein的運動控制學說……………………...….23 第三節 動作行為之肢段間互動的動力學研究…………….....27 第四節 肢段間互動的動力學在有接觸力作用的研究……..32 第五節 結語…………………………………………………….35 第參章 研究方法與步驟…………………………….37 第一節 研究對象………………………………………………37 第二節 實驗儀器與多機同步技術…………………………..38 第三節 實驗步驟……………………………………………..40 第四節 影片分析法…………………………………………..43 第五節 打擊力量測量系統…………………………………..44 第六節 生物力學模式……………………………………..…49 第肆章 結果與討論………………………………….64 第一節 不同打擊動作練習的運動學特徵……………………64 第二節 實際撞擊的打擊力量特徵…………………………..76 第三節 不同打擊練習的肘關節控制力矩…………………….78 第四節 不同打擊練習的肩關節控制力矩…………………..86 第五節 綜合討論………………………………………...……..92 第伍章 結論與建議………………………………….96 第一節 結論…………………………………………….………96 第二節 建議……………………………………………..……...98 引用文獻………………………………………...…100 中文部份………………………………………………………..100 英文部份………………………………………………………100 附錄I:演空打擊動作各試做區間的運動學參數統計結果……….106 附錄II:零動量撞擊動作練習各試做區間 的運動學參數統計結果…………………………………..113 附錄III:有動量撞擊動作練習各試做區間 的運動學參數統計結果…………………………………118 附錄IV:受試者D演空打擊練習的肘關節控制力矩………………..123 附錄V:受試者D演空打擊練習的肩關節控制力矩………………...124 表 次 表1:打擊力量測量系統的靜態誤差測試結果。………..…….……….48 表2:打擊力量測量系統在垂直靶面方向的動態誤差測試結果。……49 表3:演空打擊各階段動作時間平均數與標準差……………………106 表4:演空打擊動作運動學參數之平均數與標準差………...……….107 表5:演空打擊各試做區間的衝拳時間 單因子變異數分析摘要表………………………………..….108 表6:演空打擊各試做區間的衝拳時間 事後比較表………….………………………………..………108 表7:演空打擊各試做區間的收拳時間 單因子變異數分析摘要表……………………………..…….108 表8:演空打擊各試做區間的全部時間 單因子變異數分析摘要表……………………………..…….109 表9:演空打擊各試做區間的全部時間事後比較表………...…...…..109 表10:演空打擊各試做區間的至最大衝拳速度時間 單因子變異數分析摘要表……..…..…..….…..…..…..…......109 表11:演空打擊各試做區間的至最大收拳速度時間 單因子變異數分析摘要表……..…..…..………...…....…......110 表12:演空打擊各試做區間的衝拳最大速度 單因子變異數分析摘要表…..…..…..…..…..…..…..….........110 表12:演空打擊各試做區間的衝拳最大速度 事後比較表……..…..…..…..……………..…………...…......110 表13:演空打擊各試做區間的收拳最大速度 單因子變異數分析摘要表……..…..…..……..…..…....…......111 表14:演空打擊各試做區間的收拳最大速度 事後比較表……..…..…..……………..…..…………....…......111 表15:演空打擊試做區間至衝拳最大速度標準化時間 單因子變異數分析摘要表……..…..…...…..…..….......…......111 表16:演空打擊試做區間至收拳最大速度標準化時間 單因子變異數分析摘要表……..…..…..…..…..……...…......112 表17:零動量撞擊動作各階段動作時間平均數與標準差…….….....113 表18:零動量撞擊動作運動學參數之平均數與標準差……..…........114 表19:零動量撞擊動作各試做區間的衝拳時間 單因子變異數分析摘要表…..…..…..…….…..….…...…......115 表20:零動量撞擊動作各試做區間的收拳時間 單因子變異數分析摘要表..…..…..…..…………...…..…......115 表21:零動量撞擊動作各試做區間的全部時間 單因子變異數分析摘要表..…..…..…..………..….......…......115 表22:零動量撞擊動作各試做區間至最大衝拳速度時間 單因子變異數分析摘要表..…..…..………….....…......…......115 表23:零動量撞擊動作各試做區間至最大收拳速度時間 單因子變異數分析摘要表..…………….…..…..…..……......116 表24:零動量撞擊動作各試做區間碰撞時間 單因子變異數分析摘要表..…..…..…………….……..…......116 表25:零動量撞擊動作各試做區間的衝拳最大速度 單因子變異數分析摘要表..…..…………..….…..…....…......116 表26:零動量撞擊動作各試做區間的收拳最大速度 單因子變異數分析摘要表..…..…..…………..…..…...…......116 表27:零動量撞擊動作各試做區間的打擊後靶速度 單因子變異數分析摘要表..…..…………..…..…….....…......117 表28:零動量撞擊動作各試做區間至衝拳最大速度標準化時間 單因子變異數分析摘要表.…..…..…..………….….....…......117 表29:零動量撞擊動作各試做區間至收拳最大速度標準化時間 單因子變異數分析摘要表.…..…………...…..….…....…......117 表30:有動量撞擊動作各階段動作時間平均數與標準差…..………118 表31:有動量撞擊動作運動學參數之平均數與標準…………...…119 表32:有動量撞擊動作各試做區間的衝拳時間 單因子變異數分析摘要表……………………..……….……120 表33:有動量撞擊動作各試做區間的收拳時間 單因子變異數分析摘要表…………………..……….………120 表34:有動量撞擊動作各試做區間的全部時間 單因子變異數分析摘要表…………………..……….………120 表35:有動量撞擊動作各試做區間至最大衝拳速度時間 單因子變異數分析摘要表………………….…..……………120 表36:有動量撞擊動作各試做區間至最大收拳速度時間 單因子變異數分析摘要表………………………...…………121 表37:有動量撞擊動作各試做區間的碰撞時間 單因子變異數分析摘要表……………………….……..……121 表38:有動量撞擊動作各試做區間的衝拳最大速度 單因子變異數分析摘要表………………….……..…………121 表39:有動量撞擊動作各試做區間的收拳最大速度 單因子變異數分析摘要表………………….…………..……121 表40:有動量撞擊動作各試做區間的打擊後靶速度 單因子變異數分析摘要表…………………..…….…………122 表41:有動量撞擊動作各試做區間的至衝拳最大速度標準化時間 單因子變異數分析摘要表………………………….…..……122 表42:有動量撞擊動作各試做區間的至收拳最大速度標準化時間 單因子變異數分析摘要表…………………..……………122 圖 次 圖1:神經系統引發骨骼肌肉系統活動的生物力學結果。……………25 圖2:打擊靶的自由體圖。………………………………………………46 圖3:打擊靶垂直靶面方向的第a次動態誤差測試。……….…………48 圖4:上肢模型。…………………………………………………………53 圖5:任一肢段i的自由體圖。…………………………..………………54 圖6:演空打擊動作練習各試做區間的衝拳最大速度、收拳最大 速度、衝拳時間、收拳時間平均數與標準差曲線圖。…....……65 圖7:受試者A演空打擊動作練習初期與末期的右肘關節角- 右肩關節角座標圖。…………………….………………………68 圖8:零動量撞擊動作練習各試做區間的衝拳最大速度、收拳 最大速度、衝拳時間、收拳時間平均數與標準差曲線圖。……70 圖9:零動量撞擊動作練習各試做區間撞擊後的打擊靶平均數 與標準差曲線圖。……………………….……….………………71 圖10:受試者A零動量撞擊動作練習初期與末期的右肘關節角- 右肩關節角座標圖。…………………………...………………71 圖11:有動量撞擊動作練習各試做區間的衝拳最大速度、收拳 最大速度、衝拳時間、收拳時間平均數與標準差曲線圖。……………………………………………………….……74 圖12:受試者A有動量撞擊動作練習初期與末期的 右肘關節角-右肩關節角座標圖。……………………...……75 圖13:受試者A實際撞擊動作之打擊靶受力-時間曲線。……………77 圖14:受試者A演空打擊練習初期與末期的肘關節控制力矩、 肘關節角速度曲線。……………………………….....………79 圖15:受試者A無動量撞擊打擊練習初期與末期的 肘關節控制力矩、肘關節角速度曲線。……………….……83 圖16:受試者A有動量打擊練習初期與末期的肘關節控制力矩 、肘關節角速度曲線。………………………….……………84 圖17:受試者A演空打擊練習初期與末期的肩關節控制力矩 、肩關節角速度曲線。……………………………...…………87 圖18:受試者A無動量打擊練習初期與末期的肩關節控制力矩 、肩關節角速度曲線。………………………………………90 圖19:受試者A有動量打擊練習初期與末期的肩關節控制力矩 、肩關節角速度曲線。……………………………….………91 圖20:受試者D演空打擊練習的肘關節控制力矩。…………………123 圖21:受試者D演空打擊練習的肩關節控制力矩。……………….124

    中文部份
    林清和(1996):運動學習程式學。臺北:文史哲出版社。

    莊榮仁(1998):國術重擊型與點擊型打法的肢段間互動動力學分析。臺北:逸文出版社。

    黃秉憲、韓秀苓(1991):生物控制論基礎。北京:北京理工大學出版社。

    劉宇(1997):肌肉在多關節運動中的功能與下肢運動的動力學。臺灣師大體育研究,3,197-218。

    劉宇(1998):國術騰空飛腳動作關節控制力矩及其協同作用效果--肢段間互動的動力學分析。臺北:逸文出版社。

    劉宇、陳重佑、莊榮仁和黃長福(1998):國術騰空飛腳動作運動控制與協調系列研究之二──關節控制力矩及其協同作用效果的肢段間互動動力學研究。中華民國體育學報,26,241-248。

    外文部份
    Bässler, U. (1993). The femur-tibia control system of stick insects- a model system for the study of the neural basis of joint control. Brain Research Review, 18, 207-226.

    Bernstein, N. A. (1967). The coordination and regulation of movements. Oxford: Oxford university.

    Cohen, J. (1969). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.

    Dempster, W. T.(1955). Space requirements of the seated operator. (WADC Technical Report No. TR-55-159). OH: Wright-Patterson Air Force Base

    Enoka, R. M.(1983). Muscular control of a learned movement: The speed control systems hypothesis. Experimental Brain Research, 51, 135-145.

    Enoka, R. M. (1994). Neuromechanical basis of kinesiology (2nd ed.). Champaign, IL: Human Kinetics.

    Fowler, E. G., Gregor, R. J., Hodgson, J. A., & Roy, R. R. (1993). Relationship between ankle muscle and joint kinetics during the stance phase of locomotion in the cat. Journal of Biomechanics, 26, 465-483.

    Gandevia, S. C. (1982). The perception of motor commands or effort during muscular paralysis. Brain, 105, 151-159.

    Gelfand, I. M., Gurfinkel, V. S., Tsetlin, M. L., & Shik, M. L. (1971). Some problems in the analysis of movements. In I. M. Gelfand, V. S. Gurfinkel, M. L. Tsetlin, & M. L. Shik (Eds.), Models of the structural-functional organization of certain biological system. Cambridge, MA: MIT.

    Gottlieb, G. L., Corcos, D. M., & Agarwal, G. C. (1989). Organizing principles for single-joint movements: 1. A speed-insensitive strategy. Journal of Neurophysiology, 62, 342-357.

    Hannaford, B. & Stark, L. (1985). Roles of the elements of the triphasic control signal. Experimental Neurology, 90, 619-635.

    Hart, T. J., Cox, E. M., Hoy, M. G., Smith, J. L., & Zernicke, R. F. (1987). Intralimb kinetics of perturbed paw-shake response. In B. Jonsson (Ed.), Biomechanics X – A (pp. 471-478). Champaign, IL: Human Kinetics.

    Hasan, Z. (1991). Biomechanics and the study of multijoint movements. In D. R. Humphrey & H. J. Freund (Eds.), Motor control: Concepts and issues (pp. 75-84). Chichester, England: Wiley.

    Hauger, B. & Rosenberg, A. (1997). Motor control. In J. Zumerchik (Ed.), Encyclopedia of sports science (Vol. 2, pp. 700-719). New York: Simon & Macmillan.

    Hogan, N. (1984). An organizing principle for a class of voluntary movements. The Journal of Neuroscience, 4, 2745-2754.

    Hoy, M. G. & Zernicke, R. F. (1985). Modulation of limb dynamics in the swing phase of locomotion. Journal of Biomechanics, 18, 49-60.

    Hoy, M. G. & Zernicke, R. F. (1986). The role of intersegmental dynamics during rapid limb oscillation. Journal of Biomechanics, 19, 49-60.

    Kelso, J. A. S. & Schoner, G. (1988). Self organization of coordinative movement patterns. Human Movement Science, 7, 27-46.

    Kirk, R. E. (1995). Experimental design (3rd ed.). New York: Brooks/Cole Publishing.

    Latash, M. L. (1998). Neurophysiological basis of movement. Champaign, IL: Human Kinetics.

    Latash, M. L. (1996). The Bernstein problem: How does the central nervous system make its choices? In M. L. Latash & M. T. Turvey (Eds.), Dexterity and its development (pp. 277-303). Mahwah, NJ: Lawrence Erlbaum Associates.

    Latsh, M. L., & Gottlieb, G. L. (1991a). An equilibrium-point model for fast, single-joint movement: 1. Emergence of strategy-dependent EMG patterns. Journal of Motor Behavior, 23, 163-177.

    Latsh, M. L., & Gottlieb, G. L. (1991b). An equilibrium-point model for fast, single-joint movement: 2. Similarity of single-joint isometric and isotonic descending commands. Journal of Motor Behavior, 23, 179-191.

    Liu, Y. (1993). Kinematik, dynamik und simulation des leicht-athletischen sprints [Kinematics, dynamics and simulation of sprint running]. Frankfurt am main: Verlag Peter Lang.

    Lo Conte, L. R., & Merletti, R. (1995). Advances in processing of surface myoelectric signals: Part 2. Medical and Biological Engineering and Computing, 33(3), 373-384.

    Magill, R. A. (1998). Motor learning: Concepts and applications (5th ed.). New York: McGraw-Hill.

    Massaquoi, S., & Hallett, M. (1996). Kinematics of initiating a two-joint arm movement in patients with cerebellar ataxia. Canadian Journal of Neurological Sciences, 23, 3.

    Mena, D., Mansour, J. M., & Simon, S. R. (1981). Analysis and synthesis of human swing leg motion during gait and its clinical application. Journal of Biomechanics, 14, 823-832.

    Merletti, R., & Lo Conte, L. R. (1995). Advances in processing of surface myoelectric signals: Part 1. Medical and Biological Engineering and Computing, 33(3), 362-372.

    Milner, T. E., & Cloutier, C. (1993). Compensation for mechanically unstable loading in voluntary wrist movement. Experimental Brain Research, 94, 522-532.

    Perell, A., Gregor, R. J., Buford, J. A., & Smith, J. L. (1993). Adaptive control for backward quardrupedal walking. VI. Hindlimb kinetics during stance and swing. Journal of Neurophysiology, 70, 2226-2240.

    Putnam, C. A. (1983). Interaction between segments during a kicking motion. In H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp. 688-694). Champaign, IL: Human Kinetics.

    Sainburg, R. F., Ghilardi, M. F., Poizner, H., & Ghez, C. (1995). The control of limb dynamics in normal subject and patients without proprioception. Journal of Neurophysiology, 73, 820-835.

    Schneider, K., Zernicke, R. F., Schmidt, R. A., & Hart, T. J. (1989). Changes in limb dynamics during the practice of rapid arm movements. Journal of Biomechanics, 22, 805-817.

    Shumway-Cook, A., & Woollacott, M. H. (1995). Motor control: Theory and practical applications. Baltimore: Williams & Wilkins.

    Soest, A. J., & van Ingen Schenau, G. J. (1998). How are explosive movements controlled? In M. L.Latash (Ed.), Progress in motor control: Vol. 1. Bernstein’s traditions in movement studies (pp. 361-387). Champaign, IL: Human Kinetics.

    Thelen, E. (1998). Bernstein’s legacy for motor development: How infants learn to reach. In M. L.Latash (Ed.), Progress in motor control: Vol. 1. Bernstein’s traditions in movement studies (pp. 267-288). Champaign, IL: Human Kinetics.

    Thelen, E., Corbetta, D., Kamm, K., Spencer, J. Schneider, K., Zernicke, R. F. (1993). The transition to reaching: Matching intention and intrinsic dynamics. Child Development, 64, 1058-1098.

    Tomas, J. R., Salazar, W., & Lander, D. M. (1991). What is missing in p<.05? Effect size. Research Quarterly for Exercise and Sport, 62, 344-348.

    Topka, H., & Dichgans, J. (1997). The cerebellum and the physics of movement. Behavioral and Brain Sciences, 20, 2.

    Turvey, M. T., Fitch, H. L., & Tuller, B. (1982). The Bernstein perspective: I. The problems of degrees of freedom and context-conditioned variability. In J. A. S. Kelso (Ed.), Human behavior: An introduction (pp. 239-252). Hillsdale, NJ: Lawrence Erlbaum Associates.

    van Ingen Schenau, G. J. (1989). From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles. Human Movement Science, 8,301-337.

    Vander, A. J., Sherman, J. H., & Luciano, D. S. (1994). Human physiology (6th ed.). New York: McGraw-Hill.

    Wadman, W. J., Denier van der Gon, J. J., Geuze, R. H. & Mol, C. R. (1979). Control of fast goal-directed arm movements. Journal of Human Movement Studies, 5, 3-17.

    Wickelgren, I. (1998). The cerebellum: The brain’s engine of agility. Science, 281, 1588-1590.

    Wilmore, J. H., & Costill, D. L. (1999). Physiology of sport and exercise (2nd ed.). Champaign, IL: Human Kinetics.

    Winter, D. A.(1984). Kinematic and kinetic patterns in human gait: Variability and compensating effects. Human Movement Science, 3, 51-76.

    Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). New York: John Wiley & Sons.

    Zernicke, R. F., & Smith, J. L. (1996). Biomechanical insights into neural control of movement. In L. B. Rowell & J. T. Shepherd (Series Ed.) & J. L. Smith (Vol. Ed.), Handbook of physiology: Section 12. Exercise: Regulation and integration of multiple systems (pp. 293-330). New York: Oxford.

    Zajac, F. E., & Gordon, M. E. (1989). Determining muscle’s force and action in multi-articular movement. In K. B. Pandolf (Ed.), Exercise and sport sciences reviews (Vol. 17, pp. 187-230). Baltimore: Williams & Wilkins.

    Zajac, F. E. (1993). Muscle coordination of movement: A perspective. Journal of Biomechanics, 26, 109-124.

    QR CODE