簡易檢索 / 詳目顯示

研究生: 楊竣硯
Yang, Chun-Yen
論文名稱: 箱型冷氣機之節能研究
The Energy-Saving Study of Packaged Air-Conditioner
指導教授: 莫懷恩
Mo, Huai-En
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 箱型冷氣機節能EERCOPR22
英文關鍵詞: Packaged Air-Conditioner, Energy-Saving, Energy Efficiency Ratio, Coefficient of performance, R22
DOI URL: https://doi.org/10.6345/NTNU202204834
論文種類: 學術論文
相關次數: 點閱:263下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣在2014年空調機銷售量已達1,353,616台,如何運用節能設計以提昇空調設備之EER (Energy efficiency ratio)值,為節能之重要課題。
    本研究旨在提昇R22箱型冷氣機之性能,其方法為利用箱型冷氣機運轉時所產生之大量冷凝水,並以冷凝水進入壓縮機降溫器,藉以帶走壓縮熱,降低其產生熵,達到減少壓縮功、提昇系統性能與水資源的利用。
    利用熱力學第一定律分析比較改良壓縮機前後,結果顯示,壓縮機降溫器可減少25%之壓縮機產生熵,並提昇10%之COP (Coefficient of performance)值,於壓縮機消耗功率上降低80 W。

    The number of air-conditioning equipments sold during 2014 in Taiwan is 1,353,616. How to increase EER(Energy Efficiency Ratio) for air-conditioning equipments have become an important issue for saving energy nowadays.

    This study aims to improve the performance of a R22 boxed air-conditioner, by leading condensed water produced during operation of the air-conditioner into the cooler of the compressor, it brings away compressor heat , decreases entropy production, which leads to compression work decrement, system efficiency increment, and makes better use of water resources.

    Comparing the compressor before and after improvement by the first law of Thermodynamics, result shows that using compressor cooler reduces 25% of compressor entropy production, raises the COP by 10%, and decreases 80 watts of compressor power consumption.

    摘要 i Abstract iii 謝誌 v 目錄 vii 表目錄 ix 圖目錄 xi 第一章 前言 1 1.1. 研究背景與動機 1 1.2. 文獻回顧 3 1.3. 研究假設 5 1.4. 研究目的 6 1.5. 研究方法 7 1.6. 論文架構 8 第二章 理論基礎與背景 9 2.1 CNS規範 9 2.2 理想蒸氣壓縮冷凍循環系統 10 2.3 實際蒸氣壓縮冷凍循環系統 13 2.4 熱力學第一定律分析 15 第三章 實驗設計與實驗程序 21 3.1 實驗系統說明 22 3.2 實驗設備與量測儀器 23 3.3 實驗流程 27 3.4 系統測試環境 29 3.5 實驗步驟與量測方法 30 3.5.1箱型冷氣機之性能測試步驟 31 3.5.2實驗量測點 32 3.6 實驗數據計算與分析 35 3.7 誤差分析 39 第四章 結果與討論 43 4.1 箱型冷氣機性能測試 44 4.1.1 壓縮機出口冷媒溫度與壓力變化比較 45 4.1.2 性能係數比較 48 4.1.3 壓縮過程熵變化量比較 51 4.1.4 系統消耗功率比較 53 4.1.5 能源效率比較 55 第五章 結論及建議 57 5.1結論 57 5.2建議 58 參考文獻 59 符號表 63 作者簡介 67

    [1] 曾君儒整理,“全國能源會議現場直擊”,能源報導,第3 頁,2015年3月.
    [2] 行政院公共工程委員會,能源產業技術白皮書,經濟部能源局
    ,2014年5月。
    [3] 行政院公共工程委員會,能源產業技術白皮書,經濟部能源局
    ,2012年5月。
    [4] 葉承翰,“應用吸溼速乾纖維提昇R410A窗型空調機性能研究”, 國立臺灣師範大學,碩士論文,2014年7月。
    [5] C. Aprea , R. Mastrullo and C. Renno, “An analysis of the
    performance of vapor compression plant working both as a water
      chiller and heat pump using R22 and R417A, ” Applied Thermal
      EnginEERing., vol. 24, pp. 487-499, 2004.
    [6] 賴瑩栩,“箱型空調系統模擬之研究”,國立臺北科技大學,
    碩士論文,2004年7月。
    [7] C. E. Vincent, M. K. Heun, “Thermo economic analysis & design
    of domestic refrigeration systems, ” in Domestic use of energy
    conference., 2006.
    [8] 郭榮崇,“可用能分析應用於水冷式箱型冷氣機能源效率診斷
    之研究”,國立臺北科技大學,碩士論文,2006年6月。
    [9] Li Yang, James E. Braun, Eckhard A. Groll, “The impact of
    evaporator fouling and filtration on theperformance of packaged
    air conditioners, ” International Journal of Refrigeration.,
    pp. 506-514, 2007.
    [10] S. Anand, and S. K. Tyagi, “Exergy analysis and experimental
    study of a vapor compression refrigeration cycle,” Journal of
    thermal analysis and calorimetry., vol. 30, pp.961-971, 2012.
    [11] Weimin Wang, Srinivas Katipamula, Yunzhi Huang, Michael R.
    Brambley, “Energy savings and economics of advanced control
    strategies for packaged air conditioners with gas heat, ”
    Energy and Buildings., vol. 65, pp.497-507, 2013.
    [12] Weimin Wang, Srinivas Katipamula, Hung Ngo, Ronald Underhill,
    Danny Taasevigen, Robert Lutes, “Field evaluation of advanced
    controls for the retrofit of packaged air conditioners and heat
    pumps,” Applied Energy., vol. 154, pp.344-351, 2015.
    [13] M. H. Yang, R. H. Yeh, “Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems,” International Journal of Heat and Mass Transfer., vol. 87, pp. 1-10, Aug. 2015.
    [14] Nakamura, Hiroo, “Performance Improvement of R410A Room
    Air Conditioner by Vapor Injection Refrigeration Cycle Using
    Scroll Compressor,” Transactions of the Japan Society of
    Refrigerating and Air Conditioning EnginEERs., vol. 27,
    pp.221-232, 2011
    [15] Sarntichartsak, Pongsakorn, and S. Thepa, “Modeling and
    experimental study on the performance of an inverter air
    conditioner using R-410A with evaporatively cooled condenser,”
    Applied Thermal EnginEERing., vol. 51, pp.597-610, 2012.

    [16] H. Jaehyeok, M. W. Jeong, and Y. Kim, “Effects of flash tank
    vapor injection on the heating performance of an inverter-driven
    heat pump for cold regions,” International Journal of
    Refrigeration., vol. 33, no.4, p p.848-855,2010.
    [17] Wu, C. J., D. P. Liu, and J. Pan, “A study of the aerodynamic and
    acoustic performance of an indoor unit of a DC-inverter split
    air-conditioner,” Applied Acoustics, vol. 73, no.4, pp.415-422,
    2012.
    [18] Zhao, Lei, “Model-based optimization for vapor compression
    refrigeration cycle,” Energy., vol. 55, pp.392-402, 2013.
    [19] X. Yang, L. Zhao, H. Li, Z. Yu, “Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture,” Applied Energy., vol. 160, no. 15, pp. 912-919, Dec. 2015.
    [20] Y. T. Ge, S. A. Tassou, I. D. Santosa, K. Tsamos, “Design optimisation of CO2 gas cooler/condenser in a refrigeration system,” Applied Energy., vol. 160, no. 15, pp. 973-981, Dec. 2015.
    [21] Y. Lu, Y. Wang, C. Dong, L. Wang, A. P. Roskilly, “Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine,” Applied Thermal EnginEERing., vol. 91, no. 5, pp. 591-599, Dec. 2015.
    [22] L. Sun, W. Han, H. Jin, “Energy and exergy investigation of a hybrid refrigeration system activated by mid/low-temperature heat source,” Applied Thermal EnginEERing., vol. 91, no. 5, pp. 913-923, Dec. 2015.

    [23] F. Wang, D.Y. Li, Y. Zhou, “Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants,” Applied Thermal EnginEERing., vol. 91, no. 5, pp. 363-369, Dec. 2015.
    [24] G. Yan, J. Chen, J. Yu, “Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle,” Applied Thermal EnginEERing., vol. 105, no. 15, pp. 509-517, Nov. 2015.
    [25] W.L. Lee, Hua Chen, F.W.H. Yik “Modeling the performance characteristics of water-cooled air-conditioners,” Energy and Buildings., vol. 40, pp. 1456-1465, Feb. 2008
    [26] H. C. Bayrakci, A. E. Ozgur, “Energy and exergy analysis of
    vapor compression refrigeration system using pure hydrocarbon
    refrigerants,” International Journal of Energy Research;1538,
    doi:10.1002/er.1538, 2009.
    [27] H. M. Nieh, T. P. Teng, C. C. Yu, “Enhanced heat dissipation of a radiator using oxide nano-coolantOriginal Research Article,” International Journal of Thermal Sciences., vol. 77, pp. 252-261, Mar. 2014.

    下載圖示
    QR CODE