簡易檢索 / 詳目顯示

研究生: 徐榮一
論文名稱: 類神經網路應用於多個節點之IEEE802.11無線網路的速率調整
指導教授: 王嘉斌
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 吞吐量無線區域網路
英文關鍵詞: 802.11 WLAN, throughput performance
論文種類: 學術論文
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究在IEEE 802.11 無線區域網路(WLAN)中有多個工作站使用不同傳輸速率時的吞吐量(throughput)效能。無線網路在實體層(PHY)使用不同的調變與編碼技術(Modulation and Coding Schemes, MCS)支援多重傳輸速率。當某一個工作站的通道品質變差時,它會使用較低的傳輸速率來獲得較佳的連線品質。然而,IEEE802.11 媒體存取控制層(Medium Access Control, MAC)所使用的分散協調式功能(Distributed Coordination Function, DCF)對於每一個工作站提供了相同的傳輸機會,無論它們所使用的傳輸速率為何。這將導致使用高速率的工作站其資料傳輸率被限制在某一個使用中的最低速率,使得整體系統的吞吐量(Throughput)下降。這種現象稱為IEEE 802.11無線區域網路的傳輸效能不規則(performance anomaly),而這個現象在提供高範圍傳輸速率的網路,例如IEEE 802.11g 網路中將會是更為嚴重的問題。
    本研究提出一種調整Auto Rate Fallback(ARF)的演算法,以提高總吞吐量的效能在IEEE 802.11無線區域網路(WLAN)的多個節點。當節點的數量增加,並且封包傳送過程中碰撞的情況也因而增加,使用ARF演算法將有可能降低傳輸速率,所以造成整體的吞吐量相對減少許多。我們提出一種以類神經網路為基底來調整ARF的演算法達到提高吞吐量性能透過動態地調整系統參數,我們根據傳輸速率的競爭情況包括網路節點的數量及網路流量的飽和度來決定系統參數。

    We investigate the throughput performance of IEEE 802.11 Wireless Local Area Networks (WLAN) with multiple stations using different data rates. IEEE 802.11 WLAN PHYsical Layer (PHY) provides multiple data rates with different Modulation and Coding Schemes (MCS). If one station experiences bad channel conditions, it would degrade the data rate to achieve a more reliable transmission quality. However, 802.11 Distributed Coordination Function (DCF) protocol at Medium Access Control (MAC) layer essentially provides equal transmission opportunities to each transmitting station. Thus, the throughput of stations with high data rates will be restricted within the lowest rate used by some stations, resulting in the degradation of system throughput. Such the phenomenon is so called “performance anomaly” and can be an extremely severe problem in the network which provides large-scale PHY rates, e.g. 802.11g WLAN with rates ranging from 1 Mbps up to 54 Mbps.
    The study presents an adaptive Auto Rate Fallback (ARF) scheme to improve the performance of aggregate throughput in IEEE 802.11 Wireless Local Area Network (WLAN) with multiple nodes. When the number of contending nodes increases, using ARF will be likely to degrade transmission rates due to increasing packet collisions and can consequently cause a decline of the overall throughput. In this paper we propose a neural-network based adaptive ARF scheme which improves the throughput performance by dynamically adjusting the system parameters that determine the transmission rates.

    中文摘要 I Abstract II 誌謝 III 目 錄 IV 圖 目 錄 VI 表 目 錄 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究流程 3 1.4論文架構 5 第二章 相關理論與文獻探討 6 2.1無線區域網路的架構 6 2.2 無線區域網路硬體架構 8 2.3 無線區域網路軟體架構 11 2.4 IEEE 802.11 MAC通訊協定 15 2.5 分散式協調功能(DCF) 16 2.5.1 訊框間隔 17 2.5.2 退後機制 18 2.6類神經網路原理 20 2.6.1類神經網路簡介 20 2.6.2類神經網路模式架構 22 2.7 倒傳遞類神經網路之系統架構 27 第三章 類神經網路應用於鏈結調整演算法 30 3.1 ARF演算法之吞吐量效能變化 30 3.1.1 模擬環境之參數與系統架構 30 3.1.2 模擬之結果與討論 31 3.2應用類神經網路之適應性鏈結調整演算法設計 33 3.2.1 類神經網路的最佳化結構 34 第四章 實驗模擬與結果 37 4.1實驗環境 37 4.2 模擬結果與分析 37 4.2.1情境一:封包流量密集並在理想的通道狀況 38 4.2.2情境二:封包流量稀疏與中等並在理想的通道狀況 39 4.2.3情境三:封包流量密集並在資料易於錯誤的通道狀況 40 4.2.4情境四:封包流量稀疏並在資料易於錯誤的通道狀況 41 4.2.5情境五:使用RTS-CTS機制在封包流量密集並在理想與錯誤的通道狀況 42 第五章 結論與後續研究建議 46 5.1 結論 46 5.2後續研究建議 46 參考文獻 47

    [1] IEEE 802.11a/b, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Standard, IEEE, Aug. 1999.
    [2] A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band,” Bell Labs Technical J., summer 1997, Page(s): 118-133.
    [3] Kim, S. Kim, S. Choi, and D. Qiao, “CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs,” in Proc. of IEEE INFOCOM 2006.
    [4] Jd. P. Pavon and S. Chio, “Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement,” in Proc. of IEEE ICC 2003, Volume 2, Page(s): 1108-1113.
    [5] D. Qiao, S. Choi, and K.G. Shin, “Goodput analysis and link adaptation for IEEE 802.11a wireless LANs”, IEEE Transactions on Mobile Computing, Volume 1, no. 4, October 2002, Page(s): 278-292.
    [6] G. Holland, N. H. Vaidya, and P. Bahl, “A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks,” in Proc. of ACM MOBICOM 2001.
    [7] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic media access for multirate Ad Hoc Networks,” in Proc. of ACM MOBICOM 2002, Page(s): 24-35.
    [8] Z. Ji, Y. Yang, J. Zhou, M. Takai, and R. Bagrodia, “Exploiting Medium Access Diversity in Rate Adaptive Wireless LANs,” in Proc. of ACM MOBICOM 2004, Page(s): 345-359.
    [9] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance anomaly of 802.11b,” in Proc. of IEEE INFOCOM 2003, Volume 2, Page(s): 836–843.
    [10] IEEE 802.11g Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further higher data rate extension in the 2.4 GHz band,” IEEE, 2003.
    [11] M. Lacage, M.H. Manshaei, and T. Turletti. “IEEE 802.11 rate adaptation: a practical approach.” Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation ofwireless and mobile systems, pages 126-134,2004.
    [12] F. Maguolo, M. Lacage, T. Turletti. “Efficient Collision Detection for Auto Rate Fallback Algorithm.” IEEE INFOCOM, 2008.
    [13] P. Kulkarni, S. Quadri. “Simple and Practical Rate Adaptation Algorithms for Wireless Networks.” IEEE INFOCOM, 2009.
    [14] S. Khan, S. A. Mahmud, K. K. Loo, and H. S. Al-Raweshidy, “A Cross Layer Rate Adaptation Solution for IEEE 802.11 Networks,” Computer Communications, Vol. 31, Issue 8, May 2008, pp. 1638 - 1652.
    [15] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust Rate Adaptation for 802.11 Wireless Networks,” in Proc. of ACM MOBICOM 2006, pp. 146 - 157.
    [16] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance Anomaly of 802.11b,” in Proc. of IEEE INFOCOM 2003, pp. 836 - 843.
    [17] IEEE 802.11g Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, 2003.
    [18] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, Vol. 2, 1989, Page(s): 359-366.
    [19] S. Haykin, “Neural Networks: A Comprehensive Foundation,” 2nd edition, Prentice Hall.
    [20] The Matlab Home Page. http://www.mathworks.com/
    [21] 黃能富著,“區域網路與高速網路”, 維新出版社, 1996年2月
    [22] 袁世翰,“以類神經網路應用於機器人室內定位之研究”, 國立臺灣師範大學工業教育學系碩士論文, 2010年1月
    [23] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle Sense: An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs,” SIGCOMM’05, August 22–26, 2005.
    [24] Ning Yang, Improving ad hoc network performance using cross-layer information, Communications, 2005. ICC 2005. 2005 IEEE International Conference on. 4 (2005) 2764–2768.
    [25] G. Holland, N. Vaidya, P. Bahl, A rate-adaptive MAC protocol for multi-hop wireless networks, (2001) 236–251.
    [26] AARF-CD and CARA-RTS implementation for ns-3. Available online at http://telecom.dei.unidp.it/download "NS2/NS3 section".
    [27] A. Kamerman and L. Monteban. WaveLAN II: A High- Performance Wireless LAN for the Unlicensed Band. Bell Labs Technical Journal, 2(3):118–133, Sep 1997.

    無法下載圖示 本全文未授權公開
    QR CODE