研究生: |
游鎮遠 J. Y. You |
---|---|
論文名稱: |
微波介電材料MgTiO3-CaNdTiO3系統 Optical studies of microwave dielectric materials of MgTiO3-CaNdTiO3 |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 陶瓷 、微波 、光譜 |
英文關鍵詞: | ceramics, microwave, optical properties |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微波介電材料CaTiO3具有極高的介電常數,非常符合現代微波被動元件小型化的需求,但其缺點為過高的共振頻率溫度係數 。我們摻雜 為負值的MgTiO3,組合成 趨近於0的複合物,本論文的主旨是探究MgTiO3- CaNdTiO3系統之光譜性質。
我們測量(1-x)MgTiO3-xCa0.61Nd0.26TiO3+Mn2O3 (x = 0.2、0.4、0.6、0.8)樣品的拉曼散射光譜,715 cm-1拉曼散射峰屬於氧八面體呼吸振動模,其強度隨x增加而變小,並與微波頻段之Q × f值的變化趨勢一致。此外,Ca1-yNd2y/3TiO3+Mn2O3 (y = 0.3、0.39、0.48)樣品的524 cm-1氧八面體扭轉振動模的半高寬與Q × f值呈現反比關係,這些實驗結果意味著,氧八面體的振動與樣品的介電特性有緊密關聯性。
我們測量上述樣品的紅外光反射光譜,發現紅外光活性振動模中,氧八面體相對於B site陽離子彎曲振動模為樣品介電常數的主要貢獻者,且其所占介電損失的比例也最大。此振動模的對稱性低,具有較大之極化能力,亦即離子轉動的程度較大,因此產生更大的阻尼所導致。
CaTiO3-based ceramics are attractive candidates for use as miniaturization of microwave devices. It exhibits a high permittivity accompanied however by a large positive value. In contrast, MgTiO3 possesses negative values. Thus, potentially useful ceramics can be obtained by forming solid solutions between CaTiO3 and MgTiO3. In this thesis, we study the optical properties of MgTiO3- CaNdTiO3 systems.
(1-x)MgTiO3 - xCa0.61Nd0.26TiO3 + Mn2O3 (x = 0.2, 0.4, 0.6, and 0.8) were studied by Raman-scattering spectroscopy. A Raman-active phonon mode observed near 715 cm-1 can be assigned to the stretching breath of oxygen octahedron. The intensity of this phonon decreses with increasing x and follows the trend of variation of the Q × f value measured in microwave frequency region. Additionally, the changes in linewidth of a Raman peak at about 524 cm-1 (torsional vibrations of oxygen octahedron) observed in Ca1-yNd2y/3TiO3 + Mn2O3 (y = 0.3, 0.39, and 0.48) are inversely proportional to the Q × f value. These results highlight the vibrations of oxygen octahedron are strongly correlated with the microwave properties of MgTiO3- CaNdTiO3 systems.
Finally, the analysis of infrared reflectance spectra of MgTiO3- CaNdTiO3 systems shows that the bending mode of the oxygen octahedron contributes largely the dielectric constant and a concomitant high dielectric loss.
[1] 翁敏航,射頻被動元件設計,東華書局,2006年9月出版。
[2] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, and Y. Tohdo, “Microwave millimeterwave dielectric materials”, Key Eng. Mater.
269, 195 (2004).
[3] G. Wolfram and H. E. Gobel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramic (x + y + z = 2)”, Mat.
Res. Bull. 16[11], 1455 (1981).
[4] S. Nishgaki, H. Kato, S. Yano, and R. Kamamura, “Microwave dielectric properties of (Ba, Sr)O-Sm2O3-TiO2 ceramics”, Am. Ceram.
Soc. Bull. 66[9], 1405 (1987).
[5] L. L. Hench and J. K. West, “Principles of electronic ceramics”, John
Wiley & Sons, 1990.
[6] S. J. Fiedziuszko, I. C. Hunter, T. Itoh. Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, Devices, and
circuits”, IEEE Trans. On Microw. Theory and Tech. 50[3] (2002).
[7] I. M. Reaney and D. Iddles, “Microwave dielectric ceramics for resonators and filters in mobile phone networks”, J. Am. Ceram. Soc. 89[7], 2063 (2006).
[8] 李俊德,複合性鈣鈦礦型結構之鈮氧化物陶瓷的結構與圍波介電性質之關係,國立成功大學資源工程學系博士論文,96年1月。
[9] J. Takahashi, K. Kageyama, and K. Kodaira, “Microwave dielectric properties of lanthanide titanate ceramics”, Jpn. J. Appl. Phys. 32, 4327 (1993).
[10] 楊茹媛、翁敏航、鐘世賓、吳信賢,實現於微波高介電陶瓷基板之射頻濾波元件技術,通訊技術電子月刊第十六卷第二期 (2010).
[11] I. M. Reaney, I. Qazi, and W. E. Lee, “Order – disorder behavior in Ba(Zn1/2Ta1/2)O3”, J. Appl. Phys. 88[11], 6708 (2000).
[12] M. Barwick, F. Azough, and R. Freer, “Structure and dielectric properties of perovskite ceramics in the system Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3”, J. Eur. Ceram. Soc. 26, 1767 (2006).
[13] R. Guo, A. S. Bhalla, and L. E. Cross, “Ba(Mg1/2Ta1/2)O3 single crystal fiber grown by the laser heated pedestal growth technique”, J. Appl. Phys. 75. 4704 (1994).
[14] H. Tamura, D. A. Sagala, and K. Wakino, “Lattice vibrations of Ba(Zn1/2Ta1/2)O3 crystal with ordered perovskite structure”, Jpn. J. Appl. Phys. 25, 787 (1986).
[15] Y. Fang, A. Hu, S. Ouyang, and J. J. Oh, “The effect of calcination on the microwave dielectric properties of Ba(Mg1/2Ta1/2)O3”, J. Eur. Ceram. Soc. 21, 2745 (2001).
[16] F. Galasso and J. Pyle, “Ordering in compounds of the A(B’0.33Ta0.67)O3 type”, Inorg. Chem. 2, 482 (1963).
[17] C. T. Lee, Y. C. Lin, and C. Y. Huang, “Cation ordering and dielectric characteristics in barium zinc niobate”, J. Am. Ceram. Soc. 90[2], 483 (2007).
[18] E. Cockayne, “Comparative dielectric response in CaTiO3 and CaAl1/2Nb1/2O3 from first principles”, J. Appl. Phys. 90, 1459 (2001).
[19] C. L. Huang and M. H. Weng, “Improved high Q value of MgTiO3- CaTiO3 microwave dielectric cersmics at low sintering temperature”, Materials Research Bulletin 36, 2741 (2001).
[20] C. L. Huang, C. H. Shen, and C. L. Pan, “Characterization and dielectric behavior of V2O5- doped MgTiO3-CaTiO3 ceramic system at microwave frequency”, Material Science and Engineering B 145, 91 (2007).
[21] W. S. Kim, E. S. Kim, and K. H. Yoon, “Effects of Sm3+ substitution on dielectric properties of Ca1 – xSm2x/3TiO3 ceramics at microwave frequencies”, J. Am. Ceram. Soc. 82 [8], 2111 (1999).
[22] I. S. Kim, W. H. Jung, Y. Inaguma, T. Nakamura, and M. Itoh, “Dielectric propreties of A site deficient perovskite type lanthanum calcium titanium oxide solid solution system ((1-x)La2/3TiO3- xCaTiO3 (0.1 ≦ x ≦ 0.96)), ”Mater. Res. Bull 30[3], 307 (1995).
[23] M. D. Kingery and H. K. Barsoum, “Fundamental of ceramics”, The McGraw-Hill Companies Inc. 526 (1997).
[24] G. S. Babu, V. Subramanian, V. R. K. Murthy, I. N. Lin, C. T. Chia, and H. L. Liu, “Far infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5-x)Snx)O3 ceramics”, J. Appl. Phys. 102, 064906 (2007).
[25] 翁士民,高溫超導銅氧化物 Y1-xCaxBa2Cu3Oy和 Y1-xPrxBa2Cu4O8
之光譜研究,國立臺灣師範大學物理研究所碩士論文,93年6
月。
[26] D. A. Skoog and J. J. Leary著,林敬二、林宗義審譯,儀器分析,
美亞書版股份有限公司,1971 第四版上冊。
[27] 毛光興,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[28] 李冠卿,近代光學,聯經出版社,中華民國六十九年七月第二版。
[29] M. S. Fu, X. Q. Liu, and X. M. Chen, “Effect of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics”, J. Am. Ceram. Soc. 93[3], 787 (2010).
[30] T. Takahashi, “First principles investigation of the phase stability for Ba(B2+1/3B5+2/3)O3 microwave dielectrics with the complex perovskite structure”, Jpn. J. Appl. Phys. 39, 5637 (2000).
[31] B. A. Wechsler and R. B. Von Dreele, “Structure refinements of Mg2TiO4, MgTiO3, MgTi2O5 by time of flight neutron powder diffraction”, Acta Cryst. B 45, 542 (1989).
[32] S. Sasaki, C. T. Prewitt, and J. D. Bass, “Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group”, Acta Cryst. C 43, 1668 (1987).
[33] S. Zeidenfeld, “The Hilger X-ray crystallography and the cubic -crystal analyzer”, Proc. Phys. Soc. 43, 512 (1931).
[34] 洪慈憶,微波介電材料鈦酸鑭-鋁酸鑭(摻雜錳)之光譜性質研究,
國立臺灣師範大學物理研究所碩士論文,99年7月。
[35] Y. C. Liou and S. L. Yang, “Calcium doped MgTiO3-MgTi2O5 ceramics prepared using a reaction-sintering process”, Mater. Sci. Eng. B 142, 116 (2007).
[36] M. S. Fu, X. Q. Liu, and X. M. Chen, “Structure and microwave dielectric characteristics of Ca1-xNd2x/3TiO3 ceramics”, J. Eur. Ceram. Soc. 28, 585 (2008).
[37] S. Y. Noh, M. J. Yoo, S. Nahm, C. H. Choi, H. M. Park, and H. J. Lee, “Effcet of structural changes on the microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics”, Jpn. J. Appl. Phys. 41, 2978 (2002).
[38] Y. Dai, G. Zhao, and H. Liu, “First principles study of the dielectric properties of Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3”, J. Appl. Phys. 105, 034111 (2009).
[39] I. N. Lin, C. T. Chia, H. L. Liu, H. F. Cheng, R. Freer, M. Barwick, and F. Azough, “Intrinsic dielectric and spectroscopic behavior of perovskite Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics”, J. Appl. Phys. 102, 044112 (2007).
[40] M. Y. Chen, C. T. Chia, I. N. Lin, L. J. Lin, C. W. Ahn, and S. Nahm, “Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering”, J. Eur. Ceram. Soc. 26, 1965 (2006).
[41] M. Furuya, “Microwave dielectric properties and characteristics vibrations for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3 (A = Ba, Sr, and Ca) ceramics”, J. Appl. Phys. 85 [2], 1084 (1999).
[42] R. Zurmuhlen, J. Petzelt, S. Kamba, V. Voitsekhovskii, E. Colla, and N. Setter, “Dielectric spectroscopy of Ba(B’1/3B”2/3)O3 complex perovskite ceramics: correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012-1014 Hz)”, J. Appl. Phys. 77 [10], 15 (1995).
[43] A. Dia and R. L. Moreira, “Far infrared spectroscopy in orderd and disordered Ba(Mg1/3Nb2/3)O3 microwave ceramics”, J. Appl. Phys. 94 [5], 3414 (2003).
[44] C. H. Wang, X. P. Jing, W. Feng, and J. Lu, “Assignment of Raman active vibrational modes of MgTiO3”, J. Appl. Phys. 104, 034112 (2008).
[45] V. M. Ferreira, J. L. Baptista, S. Kamba, and J. Petzelt, “Dielectric spectroscopy of MgTiO3-based ceramics in the 109-1014 Hz region”, Journal of Material Science 28, 5984 (1993).
[46] V. Zelezny, E. Cockayne, J. Petzelt, M. F. Limonov, D. E. USvyat, V. V. Lemanov, and A. A. Volkov, “Temperature dependence of infrared active phonons in CaTiO3: A combined spectroscopic and first principles study”, Phys. Rev. B 66, 224303 (2002).
[47] Y. C. Chen, H. F. Cheng, C. C. Lee, C. T. Chia, H. L. Liu, and I. N. Lin, “Correlation of microwave dielectric properties and normal vibration modes of Ba(Mg1/3Ta2/3)O3 – series materials”, Journal of Electroceramics, 13, 271 (2004).
[48] 陳美瑜,A(B’1/3B’’2/3)O3 介電陶瓷之微觀結構與微波特質關聯性研究,國立臺灣師範大學物理研究所碩士論文,95年6月。
[49] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys. 94 [5], 3360 (2003).
[50] S. H. Yoo, K. H. Yoon, J. W. Choi, and S. J. Yoon, “Far infrared reflectivity spectra and influence of thermally induced strain on quality factor of MgTiO3 ceramics at microwave frequencies”, Jpn. J. Appl. Phys. 43[3], 343 (2004).
[51] R. D. Shannon and C. T. Prewitt, “Revised values of effective ionic radii”, Acta. Cryst. B 26, 1046 (1970).
[52] J. Petzelt, E. Buixaderas, G. Komandin, A. V. Pronin, M. Valant, and D. Suvorov, “Infrared dielectric response of the La2/3TiO3-LaAlO3 microwave ceramics system”, Mater. Sci. Eng. B 57, 40 (1998).
[53] J. B. Kim, K. H. Yoon, and Y. S. Cho, “Microwave dielectric properties of (1-x)(Na1/2Nd1/2)TiO3-xLa(Mg1/2Ti1/2)O3 via ordering and far IR reflectivity spectra”, J. Am. Ceram. Soc. 88[3], 612 (2005).
[54] E. R. Kipkoech, F. Azough, and R. Freer, “Microstructural control of microwave dielectric properties CaTiO3-La(Mg1/2Ti1/2)O3 ceramics”, J. Appl. Phys. 97, 064103 (2005).
[55] M. Hu, H. Gu, X. Chu, J. Qian, and Z. Xia, “Crystal structure and dielectric properties of (1-x)Ca0.61Nd0.26TiO3-xNd(Mg1/2Ti1/2)O3 complex perovskite at microwave frequencies”, J. Appl. Phys. 104, 124104 (2008).
[56] L. S. Cavalcante, V. S. Marques, J. C. Sczancoski, M. T. Escote, M. R. Joya, J. A. Varela, M. R. M. C. Santos, P. S. Pizani, and E. Longo,
“Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces”, Chemical Engineering Journal 143, 299 (2008).
[57] H. Zheng, H. Bagshaw, G. D. C. C. Gyorgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramic”, J. Appl. Phys. 94[5], 2948 (2008).