簡易檢索 / 詳目顯示

研究生: 張家寧
Chang, Chia-Ning
論文名稱: 透過調控泛素蛋白酶體系統作為第三型多麩醯胺小腦萎縮症的治療策略
Ubiquitin proteasome pathway modulation as therapeutic strategy for polyQ-mediated SCA3
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 脊髓小腦萎縮症多麩醯胺泛素蛋白酶體系統中草藥水萃物
英文關鍵詞: Spinocerebellar ataxias, Polyglutamine, Ubiquitin proteasome system, Chinese herbal medicine extracts
DOI URL: https://doi.org/10.6345/NTNU202202051
論文種類: 學術論文
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦萎縮症(SCA)為體染色體顯性遺傳之神經退化性疾病,其中第1、2、3、6、7、8、17型SCA及齒狀核紅核蒼白球路易體萎缩症(DRPLA)皆起因於特定基因中CAG三核苷酸不正常擴增,進而轉譯出長鏈的多麩醯胺(PolyQ)蛋白。錯誤摺疊的擴增多麩醯胺蛋白傾向於細胞中形成聚集(Aggregation),此為多麩醯胺疾病(PolyQ disease)之共同病徵。當神經元內累積過多不可溶之聚集,將導致神經元功能障礙,引發漸進性脊髓小腦共濟失調。第三型脊髓小腦萎縮症(SCA3)於眾多亞型中最為常見,患者因座落於14q32.1的ATXN3基因發生突變而致病,在正常人基因中CAG三核苷酸重複約13~36次,但患者基因中重複次數會高達68~79次。由於突變多麩醯胺蛋白的累積為致病主要始因,故透過調控泛素蛋白酶體系統(Ubiquitin proteasome system)活性,以清除聚集的多麩醯胺蛋白,進而抑制聚集導致的細胞毒性,減少神經元死亡,對治療SCA3具有潛力。先前本實驗室使用SCA3 ATXN/Q75-GFP 293細胞株,對順天堂公司提供的中草藥水萃物進行檢測,篩選出14種具抑制PolyQ聚集效果的中草藥水萃物。本研究接續上述結果,利用泛素蛋白酶體系統表達細胞(GFPu),經流式細胞儀分析,初步篩選出8種顯著提升蛋白酶體活性之水萃物,並以20S蛋白酶體活性分析及西方轉漬法分析泛素化及GFP蛋白確認之。其次鎖定其中5種中草藥水萃物,利用誘導神經分化的ATXN3/Q75-GFP SH-SY5Y細胞,經分析聚集、神經突生長(Neurite outgrowth)、凋亡蛋白酶3 (Caspase 3)活性、蛋白酶體活性,及ATXN3/Q75-GFP、泛素、Bcl-2、Bax等蛋白表現量,確認中草藥水萃物之神經保護效果。最後針對其中兩種中草藥水萃物之3種活性成分,以GFPu細胞及ATXN3/Q75-GFP SH-SY5Y細胞,分別確認其活化蛋白酶體及神經保護效果。此研究希冀能提供SCA3等多麩醯胺疾病良好的治療策略。

    Autosomal dominant spinocerebellar ataxias (SCA) including SCA types 1, 2, 3, 6, 7, 8, 17 and dentatorubropallidoluysian atrophy (DRPLA), are caused by the abnormal expansions of CAG trinucleotide repeats and associated polyglutamine (polyQ) tract. Accumulation of insoluble intracellular deposits containing the aggregated disease proteins is a common feature of polyQ diseases, leading to progressive neuronal dysfunction and subsequent degenerative process. Among SCA, SCA type 3 (SCA3) is the most common form of SCA worldwide. It is characterized by a CAG triplet expansion in the ATXN3 gene on chromosome 14q32.1, with 13~36 repeats in normal individuals and 68~79 repeats in most of the clinically diagnosed patients. As accumulation of the mutated polyQ protein is a possible initial event in the pathogenic cascade, clearance of aggregated protein by ubiquitin proteasome system (UPS) is supposed to inhibit a wide range of downstream detrimental events to suppress neuronal cell death. Previously we used SCA3 ATXN3/Q75-GFP 293 cells to screen Chinese herbal medicine extracts provided by Sun-Ten Pharmaceutical Co. for inhibiting polyQ aggregation. Among the tested extracts, 14 displayed good aggregation-inhibitory potential. In this study the identified 14 extracts were examined for enhancing proteasome activity by flow cytometry analysis of ubiquitin-proteasome reporter cells (GFPu) expressing destabilized fluorescent GFP protein. Among the 14 tested extracts, 8 displayed increased proteasome activity which was confirmed by 20S proteasome activity assay and Western blot analysis of ubiquitinated and fused GFP proteins in GFPu cells. Among them, neuroprotection effects of 5 selected extracts were further confirmed by analyses of polyQ aggregation, neurite outgrowth, caspase 3/proteasome activities, and ATXN3-GFP/
    ubiquitin/Bcl-2/Bax protein levels in neuronal differentiated ATXN3/Q75-GFP SH-SY5Y cells. Finally enhancement of proteasome and neuroprotection of 3 active constituents from 2 selected extracts were affirmed in GFPu or ATXN3/Q75 SH-SY5Y cells. This study may have therapeutic applications in polyQ-mediated disorders.

    目 錄Ⅰ 圖 表 目 錄 Ⅴ 中 文 摘 要 Ⅶ Abstract Ⅸ 壹、緒 論 1 一、脊髓小腦萎縮症(Spinocerebellar ataxias; SCAs) 1 二、第三型脊髓小腦萎縮症(SCA3/MJD) 2 三、泛素-蛋白酶體系統(Ubiquitin proteasome system; UPS) 3 (一)泛素化修飾作用(Ubiquitination) 4 (二)蛋白酶體(Proteasome) 5 四、泛素-蛋白酶體系統與神經退化性疾病 6 五、藥物篩檢研究 7 貳、研 究 目 的 10 參、實 驗 材 料 與 方 法 11 一、GFPu細胞篩選增強蛋白酶體活性之中草藥水萃物 11 (一)流式細胞儀分析GFPu細胞螢光 11 (1)細胞繼代培養 11 (2)細胞螢光觀察 11 (3)中草藥水萃物/化合物處理 12 (4)流式細胞儀偵測 13 (二) 20S蛋白酶體活性分析 13 (三)西方轉漬法分析 14 (1)蛋白質萃取與聚丙烯醯胺膠體電泳(SDS-PAGE) 14 (2)西方轉漬及免疫染色法 14 二、評估中草藥水萃物對ATXN3/Q75 SH-SY5Y細胞的保護效果 15 (一)活細胞影像分析神經突生長與ATXN3/Q75蛋白聚集 15 (二)蛋白質表現分析 16 (三)凋亡蛋白酶3活性分析 17 (四) 20S蛋白酶體活性分析 17 三、評估中草藥水萃物活性成分的保護效果 18 (一) GFPu細胞株檢測增強蛋白酶體活性之成分 18 (1)流式細胞儀偵測GFP螢光 18 (2)西方轉漬法分析Ubiquitin及GFP蛋白 18 (二) ATXN3/Q75 SH-SY5Y細胞檢測活性成分的保護效果 19 (1)活細胞影像分析ATXN3/Q75蛋白聚集 19 (2)凋亡蛋白酶3活性分析 19 (3) 20S蛋白酶體活性分析 20 (4)西方轉漬法分析蛋白質表現 20 四、統計分析 20 肆、研 究 結 果 22 一、GFPu細胞篩選增強蛋白酶體活性之中草藥水萃物 22 (一)流式細胞儀分析GFP螢光 22 (二) 20S蛋白酶體活性分析 23 (三)西方轉漬法分析 24 二、評估中草藥水萃物對ATXN3/Q75 SH-SY5Y細胞的保護效果 24 (一)活細胞影像分析神經突生長與ATXN3/Q75蛋白聚集 24 (二)西方轉漬法分析泛素化蛋白、ATXN3/Q75-GFP、Bcl-2、 Bax等蛋白表現 26 (三)凋亡蛋白酶3及20S蛋白酶體活性分析 27 三、評估活性成分對細胞的保護效果 28 (一) GFPu細胞株檢測中草藥水萃物增強蛋白酶體活性之成分 28 (二) ATXN3/Q75 SH-SY5Y細胞檢測增強蛋白酶體活性之成分 29 (1) ATXN3/Q75蛋白聚集、凋亡蛋白酶3及20S蛋白酶體活性 分析 29 (2)西方轉漬法分析泛素化蛋白、ATXN3/Q75-GFP、Bcl-2、Bax 等蛋白表現 30 伍、討 論 32 一、調控泛素-蛋白酶體系統之藥物篩檢 32 二、中草藥水萃物及其活性成分對細胞的保護效果 36 (一) Catalpol 36 (二) Puerarin 37 (三) Daidzein 37 三、未來研究方向 39 陸、參 考 文 獻 40 柒、附 錄 圖 表 53 圖 表 目 錄 表一、中草藥(Chinese herbal medicine, CHM)水萃物 53 圖一、中草藥水萃物對GFPu細胞綠螢光亮度的影響 54 圖二、中草藥水萃物對GFPu細胞20S蛋白酶體活性的影響 56 圖三、中草藥水萃物對GFPu細胞Ubiquitin及GFP蛋白的影響 57 圖四、中草藥水萃物對ATXN3/Q75 SH-SY5Y細胞polyQ聚集及神經 突生長的影響 59 圖五、中草藥水萃物對ATXN3/Q75 SH-SY5Y細胞Ubiquitin、GFP、 Bcl-2、Bax蛋白的影響 61 圖六、中草藥水萃物對ATXN3/Q75 SH-SY5Y細胞Caspase 3及20S蛋 白酶體活性的影響 63 圖七、NH001 (地黃)、NH037 (葛根)中Catalpol、Puerarin、Daidzein三 種活性成分之化學式、分子量及分子結構 65 圖八、Catalpol、Puerarin、Daidzein對GFPu細胞螢光的影響 66 圖九、Catalpol、Puerarin、Daidzein對GFPu細胞Ubiquitin及GFP蛋白的 影響 67 圖十、Catalpol、Puerarin、Daidzein對ATXN3/Q75 SH-SY5Y細胞 polyQ聚集、細胞凋亡蛋白酶3及20S蛋白酶體活性的影響 68 圖十一、Catalpol、Puerarin、Daidzein對ATXN3/Q75 SH-SY5Y細胞 Ubiquitin、GFP、Bcl-2、Bax蛋白的影響 70

    巫逸琦 (2012) Nrf2與神經退化性疾病:啟動子多型性與以氧化壓力為目標的治療策略。國立臺灣師範大學生命科學系碩士論文。
    Ahmed, T., Javed, S., Tariq, A., Budzynska, B., D'Onofrio, G., Daglia, M., Nabavi, S. M. (2017). Daidzein and its Effects on Brain. Current Medicinal Chemistry, 24, 365-75.
    Awang, D. V. C. (1994) Herbs of choice: The therapeutic use of phyto medicinals. Pharm Products Press, 37-41.
    Bence, N. F., Sampat, R. M., Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552-5.
    Bennett, E. J., Bence, N. F., Jayakumar, R., Kopito, R. R. (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular Cell, 17, 351-65.
    Brady, H. J., Gil-Gomez, G. (1998). Molecules in focus Bax. The pro-apoptotic Bcl-2 family member, Bax. International Journal of Biochemistry & Cell Biology, 30, 647-50.
    Buchberger, A., Bukau, B., Sommer, T. (2008) Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in Arms. Molecular Cell, 40, 238-52.
    Burnett, B., Li, F., Pittman, R. N. (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Human Molecular Genetics, 12, 4330-5.
    Burnett, B. G., Pittman, R. N. (2005) The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proceedings of the National Academy of Sciences of the United States of America, 102, 4330-5.
    Chang, J. C., Wu, S. L., Hoel, F., Cheng, Y. S., Liu, K. H., Hsieh, M., Hoel, A., Tronstad, K. J., Yan, K. C., Hsieh, C. L., Lin, W. Y., Kuo, S. J., Su, S. L., Liu, C. S. (2016) Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Scientific Reports, 6, 30436.
    Cheng, Y., Leng, W., Zhang, J. (2016) Protective effect of puerarin against oxidative stress injury of neural cells and related mechanisms. Medical Science Monitor, 22, 1244-9.
    Cheng, Y. F., Zhu, G. Q., Wang, M., Cheng, H., Zhou, A., Wang, N., Fang, N., Wang, X. C., Xiao, X. Q., Chen, Z. W., Li, Q. L. (2009) Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis. Neuroscience Research, 63, 52-8.
    Chondrogianni, N., Voutetakis, K., Kapetanou, M., Delitsikou, V., Papaevgeniou, N., Sakellari, M., Lefaki, M., Filippopoulou, K., Gonos, E. S. (2015) Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Research Reviews, 23, 37-55.
    Chou, A. H., Lin, A. C., Hong, K. Y., Hu, S. H., Chen, Y. L., Chen, J. Y., Wang, H. L. (2011) p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochemistry International, 58, 145-52.
    Costa Mdo, C., Paulson, H. L. (2012) Toward understanding Machado-Joseph disease. Progress in Neurobiology, 97, 239-57.
    Dantuma, N. P., Bott, L. C. (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Frontiers in Molecular Neuroscience, 7, 70.
    de Bilbao, F., Dubois-Dauphin, M. (1996) Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bcl-2 transgenic mice. Neuroscience, 71, 1111-9.
    Di Prospero, N. A., Fischbeck, K. H. (2005) Therapeutics development for triplet repeat expansion diseases. Nature Reviews Genetics, 6, 756-65.
    Duenas, A. M., Goold, R., Giunti, P. (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain, 129, 1357-70.
    Farlie, P. G., Dringen, R., Rees, S. M., Kannourakis, G., Bernard, O. (1995) bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 92, 4397-401.
    Gao, Y., Wang, X., He, C. (2016) An isoflavonoid-enriched extract from Pueraria lobata (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis. Journal of Ethnopharmacology, 193, 524-30.
    Ghosh, S., Banerjee, S., Sil, P. C. (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food and Chemical Toxicology, 83, 111-124.
    Hardwick, J. M., Soane, L. (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harbor perspectives in biology, 5.
    Hartl, F. U., Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295, 1852-8.
    Hsieh, M., Tsai, H. F., Lu, T. M., Yang, C. Y., Wu, H. M., Li, S. Y. (1997) Studies of the CAG repeat in the Machado-Joseph disease gene in Taiwan. Human Genetics, 100, 155-62.
    Jantaratnotai, N., Utaisincharoen, P., Sanvarinda, P., Thampithak, A., Sanvarinda, Y. (2013) Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. International Immunopharmacology, 17, 483-8.
    Jiang, B., Du, J., Liu, J. H., Bao, Y. M., An, L. J. (2008a) Catalpol attenuates the neurotoxicity induced by beta-amyloid(1-42) in cortical neuron-glia cultures. Brain Research, 1188, 139-47.
    Jiang, B., Zhang, H., Bi, J., Zhang, X. L. (2008b) Neuroprotective activities of catalpol on MPP+/MPTP-induced neurotoxicity. Neurological Research, 30, 639-44.
    Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., Kimura, J., Narumiya S., Kakizuka, A. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genetics, 8, 221-8.
    Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E., Oltvai, Z. N. (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Seminars in Cancer Biology, 4, 327-32.
    Liang, J. H., Du, J., Xu, L. D., Jiang, T., Hao, S., Bi, J., Jiang, B. (2009) Catalpol protects primary cultured cortical neurons induced by Abeta1-42 through a mitochondrial-dependent caspase pathway. Neurochemistry International, 55, 741-6.
    Li, D. Q., Bao, Y. M., Li, Y., Wang, C. F., Liu, Y., An, L. J. (2006) Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury. Brain Research, 1115, 179-85.
    Li, D. Q., Li, Y., Liu, Y., Bao, Y. M., Hu, B., An, L. J. (2005) Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury. Toxicon, 46, 845-51.
    Li, X., Liu, H., Fischhaber, P. L., Tang, T. S. (2015a) Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Progress in Neurobiology, 132, 34-58.
    Li, B., Li, L., Zhao, A., Han, B., Fan, Y., Liu, C., Liu, J. (2015b) Preparative separation of isoflavones in plant extract of Pueraria lobata by high performance counter-current chromatography. Analytical Methods, 7, 1321-7.
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86, 147-57.
    Liu, Y., Xue, Q., Li, X., Zhang, J., Fu, Z., Feng, B., Chen, Y., Xu, X. (2014) Amelioration of stroke-induced neurological deficiency by lyophilized powder of catapol and puerarin. International Journal of Biological Sciences, 10, 448-56.
    Maji, A. K., Pandit, S., Banerji, P., Banerjee, D. (2014) Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Natural Products Research, 28, 2111-27.
    Matilla-Dueñas, A., Corral-Juan, M., Volpini, V., Sanchez, I. (2012) The spinocerebellar ataxias: clinical aspects and molecular genetics. In Ahmad, S. I. (Alves and others) Neurodegenerative Diseases. New York, NY, Springer US.
    Moosavi, F., Hosseini, R., Saso, L., Firuzi, O. (2016) Modulation of neurotrophic signaling pathways by polyphenols. Drug Design, Development and Therapy, 10, 23-42.
    Muchowski, P. J., Wacker, J. L. (2005) Modulation of neurodegeneration by molecular chaperones. Nature Reviews Neuroscience, 6, 11-2.
    Otter, I., Conus, S., Ravn, U., Rager, M., Olivier, R., Monney, L., Fabbro, D., Borner, C. (1998) The binding properties and biological activities of Bcl-2 and Bax in cells exposed to apoptotic stimuli. Journal of Biological Chemistry 273, 6110-20.
    Paulson, H. L., Perez, M. K., Trottier, Y., Trojanowski, J. Q., Subramony, S. H., Das, S. S., Pittman, R. N. (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron, 19, 333-44.
    Paulson, H. L. (2007) Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Seminars in Neurology, 27, 133-42.
    Robb, E. L., Stuart, J. A. (2014) Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression. Phytotherapy Research, 28, 120-31.
    Rohrdanz, E., Ohler, S., Tran-Thi, Q. H., Kahl, R. (2002) The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. Journal of Nutrition, 132, 370-5.
    Rokot, N. T., Kairupan, T. S., Cheng, K. C., Runtuwene, J., Kapantow, N. H., Amitani, M., Morinaga, A., Amitani, H., Asakawa, A., Inui, A. (2016) A role of Ginseng and its constituents in the treatment of central nervous system disorders. Evidence-Based Complementary and Alternative Medicine, 2016, 2614742.
    Schmidt, M., Kloetzel, P. M. (1997) Biogenesis of eukaryotic 20S proteasomes: the complex maturation pathway of a complex enzyme. FASEB Journal, 11, 1235-43.
    Schols, L., Bauer, P., Schmidt, T., Schulte, T., Riess, O. (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. The Lancet Neurology, 3, 291-304.
    Schols, L., Vieira-Saecker, A. M., Schols, S., Przuntek, H., Epplen, J. T., Riess, O. (1995) Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Human Molecular Genetics, 4, 1001-5.
    Soong, B. W., Paulson, H. L. (2007) Spinocerebellar ataxias: an update. Current Opinion in Neurology, 20, 438-46.
    Sorokin, A. V., Kim, E. R., Ovchinnikov, L. P. (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc), 74, 1411-42.
    Stark, M., Behl, C. (2014) The Ginkgo biloba extract EGb 761 modulates proteasome activity and polyglutamine protein aggregation. Evidence-Based Complementary and Alternative Medicine, 2014, 940186.
    Stefanis, L., Keller, J. N. (Eds.) (2006) The Proteasome in Neurodegeneration. Springer Science & Business Media.
    Takahashi, T., Katada, S., Onodera, O. (2010) Polyglutamine diseases: Where does toxicity come from? What is toxicity? Where are we going? Journal of Molecular Cell Biology, 2, 180-91.
    Takiyama, Y., Nishizawa, M., Tanaka, H., Kawashima, S., Sakamoto, H., Karube, Y., Shimazaki, H., Soutome, M., Endo, K., Ohta, S., Kagawa, Y., Kanazawa, I., Mizuno, Y., Yoshida, M., Yuasa, T., Horikawa, Y., Oyanagi, K., Nagai, H., Kondo, T., Inuzuka, T., Onodera, O., Tsuji, S. (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genetics, 4, 300-4.
    Taroni, F., Didonato, S. (2004) Pathways to motor incoordination: the inherited ataxias. Nature Reviews Neuroscience, 5, 641-55.
    Tian, Y. Y., An, L. J., Jiang, L., Duan, Y. L., Chen, J., Jiang, B. (2006) Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sciences, 80, 193-9.
    Teive, H. A. (2009) Spinocerebellar ataxias. Arquivos de Neuro-Psiquiatria, 67, 1133-42.
    Tong, S., Chen, L., Zhang, Q., Liu, J., Yan, J., Ito, Y. (2015) Separation of catalpol from Rehmannia glutinosa Libosch. by high-speed countercurrent chromatography. Journal of Chromatographic Science, 53, 725-9.
    Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N., Goldberg, A. L. (2004) Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Molecular Cell, 14, 95-104.
    Vitale, D. C., Piazza, C., Melilli, B., Drago, F., Salomone, S. (2013) Isoflavones: estrogenic activity, biological effect and bioavailability. European Journal of Drug Metabolism and Pharmacokinetice, 38, 15-25.
    Vogel, M. W. (2002) Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum, 1, 277-87.
    Wang, J., Wang, C. E., Orr, A., Tydlacka, S., Li, S. H., Li, X. J. (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. Journal of Cell Biology, 180, 1177-89.
    Wang, Z., Liu, Q., Zhang, R., Liu, S., Xia, Z., Hu, Y. (2009) Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience, 163, 1363-72.
    Weber, J. J., Sowa, A. S., Binder, T., Hubener, J. (2014) From pathways to targets: understanding the mechanisms behind polyglutamine disease. Biomed Research International, 2014, 701758.
    Wei, S. Y., Chen, Y., Xu, X. Y. (2014) Progress on the pharmacological research of puerarin: a review. Chinese Journal of Natural Medicines, 12, 407-14.
    White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J., Snider, W. D. (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. Journal of Neuroscience, 18, 1428-39.
    Williams, A. J., Paulson, H. L. (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends in Neurosciences, 31, 521-8.
    Wong, K. H., Li, G. Q., Li, K. M., Razmovski-Naumovski, V., Chan, K. (2011) Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. Journal of Ethnopharmacology, 134, 584-607.
    Wong, H. K., Bauer, P. O., Kurosawa, M., Goswami, A., Washizu, C., Machida, Y., Nukina, N. (2008) Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism. Human Molecular Genetics, 17, 3223-35.
    Wu, H. Q., Guo, H. N., Wang, H. Q., Chang, M. Z., Zhang, G. L., Zhao, Y. X. (2009) Protective effects and mechanism of puerarin on learning-memory disorder after global cerebral ischemia-reperfusion injury in rats. Chinese Journal of Integrative Medicine, 15, 54-9.
    Wüllner, U. (2003) Genes implicated in the pathogenesis of spinocerebellar ataxias. Drugs Today, 39, 927-37.
    Xu, C., Luo, L., Tan, R. X. (2004) Antidepressant effect of three traditional Chinese medicines in the learned helplessness model. Journal of Ethnopharmacololy, 91, 345-9.
    Xue, Q., Liu, Y., He, R., Yang, S., Tong, J., Li, X., . . . Xu, X. (2016) Lyophilized powder of catalpol and puerarin protects neurovascular unit from stroke. International Journal of Biological Sciences, 12, 367-80.
    Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275, 1129-32.
    Yao, S. C., Wang, L. L., Yeung, S. C. S. (1986) Pharmacology and Applications of Chinese materia medica, World Scientific, 2ed Edition, 145-7. (Eds.: Chang, H. M., But, P. P. H.)
    Yin, X. M., Oltvai, Z. N., Korsmeyer, S. J. (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 369, 321-3.
    Yuan, W., Chen, Q., Zeng, J., Xiao, H., Huang, Z. H., Li, X., Lei, Q. (2017) 3'-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regeneration Research, 12, 235-41.
    Zanjani, H., Rondi-Reig, L., Vogel, M., Martinou, J. C., Delhaye-Bouchaud, N., Mariani, J. (1998) Overexpression of a Hu-bcl-2 transgene in Lurcher mutant mice delays Purkinje cell death. Comptes Rendus de l'Académie des Sciences - Series III, 321, 633-40.
    Zanjani, H. S., Vogel, M. W., Delhaye-Bouchaud, N., Martinou, J. C., Mariani, J. (1996) Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. Journal of Comparative Neurology, 374, 332-41.
    Zhao, M., Du, Y. Q., Yuan, L., Wang, N. N. (2010) Protective effect of puerarin on acute alcoholic liver injury. American Journal of Chinese Medicine, 38, 241-9.
    Zhou, Y. X., Zhang, H., Peng, C. (2014) Puerarin: a review of pharmacological effects. Phytotherapy Research, 28, 961-75.
    Zhu, G., Wang, X., Chen, Y., Yang, S., Cheng, H., Wang, N., Li, Q. (2010) Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson's disease. Planta Medica, 76, 1820-6.
    Zhu, H., Wang, Y., Liu, Z., Wang, J., Wan, D., Feng, S., Yang, X., Wang, T. (2016) Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. Chinese Medicine, 11, 25.
    Zoghbi, H. Y., Orr, H. T. (2000) Glutamine repeats and neurodegeneration. Annual Review of Neuroscience, 23, 217-47.
    Zou, Y., Hong, B., Fan, L., Zhou, L., Liu, Y., Wu, Q., Zhang, X., Dong, M. (2013) Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3beta/Nrf2 signaling pathway. Free Radical Research, 47, 55-63.
    Zou, H., Henzel, W. J., Liu, X., Lutschg, A., Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90, 405-13.

    下載圖示
    QR CODE