研究生: |
葉辰杰 Chen-Chieh,Yeh |
---|---|
論文名稱: |
Petri-net建構網路使用者行為預測模型之研究 Applying Petri-net to Establish User Behavior |
指導教授: |
戴建耘
Dai, Jiann-Yun 張明文 Chang, Ming-Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 使用者行為 、預測模組 、控制矩陣 |
英文關鍵詞: | User Behavior, Prediction Model, Converted weight matrix, Petri-net |
論文種類: | 學術論文 |
相關次數: | 點閱:245 下載:31 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著網際網路技術迅速的發展造成網路使用率的普及日益上升,對於網站是否能針對使用者提供適合的資訊以及縮短回應時間的技術越來越究。為了達到這個目的,必須追蹤並且分析使用者使用網路的行為模式,藉此改善網頁架構,提供更好的客制化服務。本研究應用Petri-net技術來預測使用者的瀏覽路徑行為,了解網頁的結構與內容是否真正符合使用者的需求,以改善網頁結構的設計或內容。本研究中,以教育部大學課程網網站為例,使用Petri-net掌握網路使用者的動作,藉此提供使用者的路徑資料庫,使系統能正確的判斷使用者瀏覽路徑,並且應用此技術建立的預測模組改善網頁位置,使系統能預先做處理,縮短回應時間。我們希望藉由分析網路使用者歷史的瀏覽行為紀錄,建立預測模型來預測其他使用者未來可能瀏覽的網頁,並預先存取準備提供給使用者。研究中發現以下結果:
1. 使用Petri-net技術真實掌握網路使用者的動態行為,藉此提供使用者的路徑資料庫。
2. 使用轉換控制矩陣方法來建構規則表和預測模型,藉此改善網頁的架構。
研究發現使用此技術建立的預測模組,能更準確的預測使用者未來的瀏覽路 徑,並且改善網頁位置架構,增進使用者瀏覽網頁效能。
Information of network grows up fast, and there is an important thing to provide user a tool for searching information quickly. To track and analyze user behavior of network is a helpful work for achiving above purpose. We apply Petri-net approach which is used to accurately capture user behavior of network traffic, and the proposed prediction model is constructed by log database. This research is used Petri-net method to grasp the user behavior accurately, and it offers path of user behavior. And we use converted weight matrix method to construct rule table and prediction model, and it has flexibility to make management and access of the database more convenient. The experimental results showed that improve site of website and predict path of user behavior efficiently. This research is found:
1. Petri-net to grasp the user behavior accurately and it offers database of user behavior.
2. Converted weight matrix method to construct rule table and prediction model. This method can keep flexibility to system, and make management and access of the database more convenient.
[1] 詹念怡,“以網路使用者行為趨勢為基礎的模糊預測系統”,淡江大學資訊工程系畢業論文,2001。
[2] Schilling, R.J., 1990. Fundamentals of Robotics: Analysis and Control. Prentice-Hall International, ACM SIGMETRICS international conference on Measurement and modeling of computer systems ,1999.
[3] C. Shahabi, A. Zarkesh, J. Adibi, V. Shah, “Knowledge discovery from users Web-page navigation,” In Workshop on Research Issue in Data Engineering, Birmingham, England, 1997.
[4] Fan Li, Pei Cao , Wei Lin , Quinn Jacobson, “Web prefetching between low-bandwidth clients and proxies: potential and performance,” In Proceedings of the 1999 ACM SIGMETRICS international conference on Measurement and modeling of computer systems 27(1), May 1999.
[5] Yi-Hung Wu and Arbee L. P. Chen, “Prediction of Web Page Access by Proxy Server Log,” In Journal of World Wide Web: Internet and Web Information System 5, 2002, pp.67-88.
[6] E. Cohen, B. Krishnamurthy, and J. Rexford, “Efficient Algorithms for Predicting Requests to Web Servers,” In Proceeding of IEEE INFOCOM Conference, 1999, pp.284-293.
[7] Li Fan, Pei Cao, Wei Lin, Quinn Jacobson, “Web prefetching between low-bandwidth clients and proxies: potential and performance,” In Proceedings of the 1999 ACM SIGMETRICS international conference on Measurement and modeling of computer systems 27(1), May 1999.
[8] James Pitkow, Peter Pirolli, “Mining Longest Repeating Subsequences To Predict World Wide Web Surfing,” In Proc. of the 2nd USENIX Symposium on Internet Technologies and Systems, 1999.
[9] Oren Etzioni, “The world wide web: Quagmire or gold mine,” In Cmmunications of the ACM 39(11), 1996, pp. 65-68.
[10] 曾新穆、李建億譯,資料探勘,培生教育出版集團,2003。
[11] 曾憲雄、蔡秀滿、蘇東興、增秋蓉、王慶堯著,資料探勘,旗標出版股份有限公司,2003。
[12] 戚玉樑,“以Petri Net為基礎的網路服務組合前置驗證及簡化方法”,中原大學資訊管理學系碩士學位論文,2004。
[13] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” In Proceedings of ACM SIGMETRICS Conference, May 1996.
[14] Aalst, Van. der. W.M.P., “ The Application of Petri Nets to Workflow Management,“ The Journal of Circuits, Systems and Computers, Vol. 8, No. 1, pp.21-66, 1998.
[15] Pei-Jing Lin, Nian-Yi Zhan, “A Trend-based Fuzzy Prediction System for Web User’s Behavior”, A graduation thesis paper of information engineering in TKU, 2002.
[16] Jianhan Zhu, Jun Hong, John G. Hughes, “Using Markov Models for Web Site Link Prediction,” In Proceedings of the thirteenth conference on Hypertext and hypermedia, Maryland, USA, 2002.
[17] O. Nasraoui, H. Frigui, A. Joshi, R. Krishnapuram, “Mining Web Access Logs Using Relational Competitive Fuzzy Cluslering,” In Proceeding of the Eight International Fuzzy Systems Association World Congress - IFSA 99, August 1999.
[18] M. S. Chen, J. S. Park, P. S. Yu, “Efficient data mining for path traversal patterns,” IEEE Transactions on Knowledge and Data Engineering 10(2), , pp.209—220, March/April, 1998.
[19] Aalst, Van. der. W.M.P., “Don’t go with the flow: Web services composition standards exposed,” IEEE Intelligent Systems, Vol. 15, No. 2, Jan/Feb, pp.72-85, 2003.
[20] Ying-Yen Hsu, “A Quantitative Software Complexity Measurement by Program Normalization,” 2003 International Conference on Informatics, Cybernetics, and Systems, Kaohsiung, Taiwan , pp.981-986, December 14-16, 2003.
[21] Marco Scotto, Alberto Sillitti, Giancarlo Succi, Tullio Vernazza, “A relational approach to software metrics,” Proceedings of the 2004 ACM symposium on Applied computing, Nicosia, Cyprus, March 2004, pp.1536-1540.
[22] 晏文珍,“利用資料探勘技術於文件分類之研究”,南台科技大學資訊工程 系畢業論文,2004。
[23] D. Tanasa and B. Trousse, “Advanced data preprocessing for intersites web usage mining”, IEEE Intelligent System, Vol. 19, No. 2, pp.59-65, 2004.
[24] Qiang Yang , Haining Henry Zhang , Tianyi Li, “Mining web logs for prediction models in WWW caching and prefetching”, In Proc. of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, August,2001.
[25] Alexandros Nanopoulos, Dimitris Katsaros, Yannis Manolopoulos, “Effective Prediction of Web-user Accesses: A Data Mining Approach,” In Proc. of the Workshop WEBKDD, 2001.
[26] Jaideep Srivastava, R. Cooley, Mukund deshpande, Tan, Pang-Ning, “Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data,” In SIGKDD Explorations 1(2), 2000.
[27] Dar-Chin Rai, Jiann-Yun Dai, “An Analysis and Description Model for Virtual Object in Virtual Reality,” The Journal of National Taiwan Normal University, Vol. 40, No. 2, pp.37-60, 1995.