簡易檢索 / 詳目顯示

研究生: 段憶祖
Yi-Tsou Tuan
論文名稱: 整合多孔矽及奈米碳管之微型直接甲醇燃料電池研製
Development of uDMFC with integrated porous silicon and carbon nanotube
指導教授: 楊啟榮
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 152
中文關鍵詞: 微型直接甲醇燃料電池多孔矽奈米碳管
論文種類: 學術論文
相關次數: 點閱:243下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步與環保意識的高漲,人類亟需一種乾淨、無汙染的能量來源,以應用於現今生活中不可或缺的可攜式電子產品。直接甲醇燃料電池(direct methanol fuel cell, DMFC),其具有操作溫度低,啟動速度快,能量密度高,燃料攜帶方便,燃料取得容易等優點。因此,本研究希望將燃料電池微型化(micro DMFC, DMFC),並簡化其組成元件,降低製造成本,以實現整合於可攜式電子產品中的可能性。為了降低性能優異燃料電池所需的製造成本,本研究以低成本的「TMAH濕蝕刻技術」以及「光輔助電化學蝕刻技術」,製作微型直接甲醇燃料電池雙極板結構。整個研究重點包括:(1)具微流體系統之流場板製作;(2)整合於微流道底部之奈米結構擴散層製備;(3)雙極板白金觸媒層之塗佈;(4)Nafion質子交換膜(PEM)前處理;(5)膜電極組壓合製程;(6)甲醇燃料電池之元件組裝;(7)電池特性檢測與發電效率之評估等項目。
    本研究已成功使用「TMAH濕蝕刻技術」製造出深度達250 um之微型流道結構,並於微流道底部直接以「光輔助電化學蝕刻技術」,製作出微米級直徑10-20 um之多孔結構,並在孔洞內利用熱裂解CVD方式成長線徑約為70 nm的奈米碳管。實驗結果顯示,僅具有多孔矽結構之uDMFC,其最大功率為20.2 uW/cm2,以碳紙作為擴散層之對照組的uDMFC,所能輸出的最大功率密度為16.2 uW/cm2,經實驗證明多孔矽實驗組,其最大功率密度已超越碳紙對照組,本研究已成功實現利用多孔矽來取代碳紙擴散層。此外,結合奈米碳管結構之DMFC,其最大功率達到226 uW/cm2,由此可證透由奈米碳管大比表面積及驅除CO2能力的優勢,可將uDMFC的功率密度提升十倍以上。

    中文摘要 I 總目錄 II 圖目錄 V 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 微機電系統簡介 3 1.3 燃料電池 5 1.3.1燃料電池的優點 5 1.3.2燃料電池的分類 6 1.4 質子交換膜燃料電池 8 1.4.1直接甲醇燃料電池之工作原理 9 第二章 文獻回顧 14 2.1 微/奈米機電系統技術應用於燃料電池製作 14 2.2 結合多孔矽之燃料電池製作 19 2.2.1 多孔矽簡介 19 2.2.2 多孔矽蝕刻概論 23 2.2.3 光輔助電化學蝕刻之多孔矽製備法 27 2.2.4 多孔矽於燃料電池之應用 29 2.3 結合奈米碳管於燃料電池製作 36 2.3.1 奈米碳管簡介 36 2.3.2 化學氣相沈積法成長奈米碳管 40 2.3.3 奈米碳管應用於燃料電池 43 2.4 極化曲線(Polarization Curve) 52 2.5 研究動機 55 第三章 實驗設計與規劃 56 3.1實驗規劃 56 3.2 實驗製程 59 3.2.1 圖案定義製程 59 3.2.2 流道深蝕刻製程 65 3.2.3 光輔助電化學蝕刻製程 70 3.2.4 奈米碳管之成長 74 3.2.4 直接甲醇燃料電池製備流程 77 3.3 實驗設備 81 第四章 結果與討論 88 4.1 流道深蝕刻製程 88 4.2 多孔矽擴散層蝕刻製程 98 4.3 奈米碳管成長暨觸媒沉積 107 4.4 直接甲醇燃料電池組裝與性能測試 115 4.4.1 直接甲醇燃料電池組裝流程 115 4.4.2 直接甲醇燃料電池性能測試 116 第五章 結論與未來展望 128 5.1 結論 128 5.2 未來展望 130 參考文獻 131

    1.  高志勇 等人, "直接甲醇燃料電池製程技術發展現況", 工業材料雜誌, 193 (2003) 111-119
    2. 楊志忠 等人, "燃料電池的發展現況", 科學發展, 367 (2003)
    3. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003).
    4. 楊啟榮, "微機電系統技術導論", 國立台灣師範大學上課講義 (2001).
    5. 蔡英文 等人, "國際Micro Fuel Cell 發展現況", 工業材料雜誌, 283 (2010) 135-144
    6. 賴秋助 等人, "微小型直接甲醇燃料電池系統設計", 工業材料雜誌, 193 (2003) 120-125
    7. W. Y. Sim, G. Y. Kim, and S. S. Yang, "Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (DMFC) for the medical application.", Journal of Micro-electromechanical Systems, (2001) 341-344
    8. Sundmacher, K. and K. Scott. "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapor-liquid-solid system.", Chemical Engineering Science, 54 (1999) 2927-2936
    9. K. G. Stanley, Q. M. Jonathan, and W. T. Vanderhoek, "Fabrication of a micromashined micro direct methanol fuel cell", Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (2002) 450-454
    10. Y. H. Seo, and Y. H. Cho, "A miniature direct methanol fuel cell using platinum sputtered microcolumn electrodes with limtted amount of fuel", Journal of Microelectromechanical Systems (2003) 375-378
    11. G. Q. Lu, C. Y. Wang, T. J. Yen, and X. Zhang, "Development and characterization of a silicon-based micro direct methanol fuel cell", Electrochimica Acta, 49 (2004) 821-828
    12. R. Angelucci, A. Poggi, G.C. Cardinali, A. Parisini, A Tagliani, M. Mariasaldi, F. Cavani, "Permeated porous silicon for hydrocarbon sensor fabrication", Sensors and Actuators A , 74 (1999) 95-99
    13. E.J Connolly, G.M. O’Halloran, H.T.M Pham, P.M. Sarro, P.J French, "Compasison of porous silicon, porous polysilicon and porous silicon carbibe as materials for humidity sensing applications", Sensors and Actuators A , 99, (2002) 25-30
    14. P.M. Fauchet, L. Tsybeskov, S.P Duttagupta, K.D. Hirschman, "Stable photoluminescence and electroluminescence from porous silicon", Thin solid films, 297 (1997) 254-260
    15. B.C Chakravarty, Jyoti Tripathi, A.K. Sharma, R. Kumar, K.N. Sood, S.B Samanta, S.N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating", Solar energy material & Solar cells, 91 (2007) 701-706
    16. V. Lehmann, R. Stengl, H. Reisinger, R. Detemple, and W. Theiss, "Optical shortpass filters based on macroporous silicon", Applied Physics Letters, 78 (2001) 589.
    17. V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, 106 (1996) 402-405.
    18. W. Lang, P. Steiner, H. Sandmaier, "Porous silicon: a novel material forMicrosystems", Sensors and Actuators A, 51 (1995) 31-36.
    19. V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, 140(1993) 2836-2843.
    20. M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", Microengineering Applications in Optoelectronics, (1996) 1-9.
    21. V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, 106 (1996) 402-405.
    22. A. Splinter et al., "New porous silicon formation technology using internal current generation with galvanic elements", Sensors and Actuators A, 92 (2001) 394-399.
    23. C.M.A Ashruf, P. J. French, P.M.M.C Bressers, J.J Kelly, "Galvanic porous silicon formation without external contact", Sensors and Actuators A, 74 (1999) 118-122.
    24. S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, 97-98 (2002) 720-724.
    25. G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, 102, (2002) 195-201.
    26. G. D. Arrigo, S. Coffa, and C. Spinella, "Advanced micromachining processes for micro-opto-electromechanical components and devices", Sensors and Actuators A, 99 (2002) 112-118.
    27. H. Ohji, P. J. Trimp, and P. J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, 73 (1999) 95-100.
    28. Shyam Aravamudhan, Abdur Rub Abdur, Rahman, and Shekhar Bhansaliet, "Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell", Sensors and Actuators A, 123-124 (2005) 497-504
    29. Tristan Pichonat and Bernard Gauthier-Manuel, "Development of porous silicon-based miniature fuel cells", J. Micromech. Microeng., 15(2005) 179–184.
    30. Chi-Yuan Lee, Shuo-Jen Lee, Yuh-Chung Hu, Wen-Pin Shih, Wei-Yuan Fan, and Chih-Wei Chuang, "Integration of silicon micro-hole arrays as a gas diffusion layer in a micro-fuel cell", International journal of hydrogen energy, 34 (2009) 6457-6464
    31. Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Lieber, " Atomic structure and electronic properties of single-walled carbon nanotubes ", Nature, 391(1998) 62–64.
    32. W. Hoenlein, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, and E. Unger, "Carbon nanotubes for microelectronics: status and future prospects.", Material Science and Engineering C, 23(2003) 663-669
    33. Phaedon Avouris, Joerg Appenzeller, Richard Martel, and Shalom J. wind, "Carbon nanotube electronics.", Proceeding of the IEEE, 91(2003) 1772-1784
    34. David Mann, Ali Javey, Jing Kong, Qian Wang, and Hongjie Dai, "Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts", 3(2003) 1541-1544
    35. Jianwei Liu, Xiaojun Li, Amanda Schrand, Toshiyuki Ohashi, and Liming Dai, "Controlled Syntheses of Aligned Multi-Walled Carbon nanotubes: Catalyst Particle Size and Density Control via Layer-by-Layer Assemb\ling", Chem. Mater., 17(2005) 6599-6604
    36. 成會民, "奈米碳管", 五南出版社 (2004).
    37. A. Oberlin, M. Endo and T. Koyama, "High resolution electron microscope observations of graphitized carbon fibers", Carbon, 14 (1976) 133–135
    38. J. Kong, A. M. Cassell, H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes", Chemical Physics Letters, 292(1998) 567–574
    39. H. Xiao, "Introduction to semiconductor manufacturing technology", upper Saddle River, New jersey, the Pearson Prentice Hall Inc (2001)
    40. M. Meyyappan, L. Delzeit, A. Cassell1 and D.Hash, "Carbon nanotube growth by PECVD: a review", Plasma Sources Science and Technology, 12 (2003) 205–216
    41. Y. M. Shyu, " Low temperature growth of carbon nanotubes by chemical vapor deposition and plasma assisted chemical vapor deposition", National Cheng Kung University (2001).
    42. J. I. B. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan and A.G. Fitzgerald, "Low temperature plasma chemical vapour deposition of carbon nanotubes", Diamond and Related Materials, 11 (2002) 918–921
    43. http://www.fy.chalmers.seatomresearchnanotubesexperimental.xml
    44. Zhibin He, Jinhua Chen, Dengyou Liu, Hao Tang, Wei Deng, and Yafei Kuang, "Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation", Materials Chemistry and Physics, 85 (2004) 396–401
    45. Ming-Chi Tsai, Tsung-Kuang Yeh, Charn-Ying Chen, and Chuen-Horng Tsai, "A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell", Electrochemistry Communications, 9 (2007) 2299–2303
    46. Shou-Kai Wang, Fangang Tseng, Tsung-Kuang Yeh, and Ching-Chang Chieng, "Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC", Journal of Power Sources, 167 (2007) 413–419
    47. Soon-Lin Chena, Chun-Ting Lina, Ching-Chang Chienga, and Fan-Gang Tseng, "Highly efficient CO2 bubble removal on carbon nanotube supported nanocatalysts for direct methanol fuel cell", Journal of Power Sources, 195 (2010) 1640–1646
    48. H. Dohle, J. Divisek, and R. Jung, "Process engineering of the direct methanol fuel cell", J. Power Sources, 86 (2000) 469-477.
    49. 薛志鴻, 質子交換模型燃料電池電極在CO存在下之阻抗分析, 國立成功大學化學工程系碩士論文, (2003)
    50. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , and R. Tunold, "Influence of diffusion layer properties on low temperature DMFC", J. Power Sources, 127 (2004) 187-196.
    51. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, and D. Stolten, "Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution", J. Power Sources, 125 (2004) 1-9.
    52. J. Kim, S-M Lee, and S. Srinivasan, "Modeling of proton exchange membrane fuel cell performance with an empirical equation", J. Electrochem. Soc., 142 (1995) 1074-2670.
    53. 林伸茂, "直接甲醇燃料電池原理、應用與實作", 旗標出版, 11 (2006) 4-7
    54. T. V. Nguyen, "A Gas Distributor Design for Proton-Exchange -Membrane Fuel Cells", Journal of the Electrochemical Society, 143 (1996) L103-L105.
    55. Chii-Rong Yang, Cheng-Hao Yang and Po-Ying Chen, "Study on anisotropic silicon etching characteristics in various surfactant-added tetramethylammonium hydroxide water solution", Journal of the micromechanics and micro engineering, 15 (2005) 2028-2037
    56. S. Onoe, H. Tanaka, K. Hoshino, K. Matsumoto, and I. Shimoyama, " Miniature fuel cell with conductive silicon electrodes", The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (2003) 1296-1299
    57. 呂俊逸, "質子交換膜燃料電池研究─MEA的製造和性能分析", 中山大學機械工程研究所碩士論文 (2000) 31-32
    58. 黃秋萍 等人, "直接甲醇燃料電池的核心膜電極組(MEA)", 工業材料雜誌, 202 (2003) 141-150

    下載圖示
    QR CODE