研究生: |
顧家銘 Ku, Chia-Ming |
---|---|
論文名稱: |
複合奈米齒輪油應用於電動機車之性能研究 The Study on the Performance of Hybrid Nano Gear Oil Applied to Electric Motorcycle |
指導教授: |
呂有豐
Lue, Yeou-Feng |
口試委員: |
莫懷恩
Mo, Huai-En 鄧敦平 Teng, Tun-Ping 呂有豐 Lue, Yeou-Feng |
口試日期: | 2022/07/16 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 複合奈米齒輪油(SBHNGO) 、黏度試驗 、磨潤試驗 、電能消耗實驗 |
英文關鍵詞: | SiO2/BN hybrid nano gear oil (SBHNGO), Viscosity test, Tribology test, Power consumption test |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201805 |
論文種類: | 學術論文 |
相關次數: | 點閱:100 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將奈米氮化硼(BN)與奈米二氧化矽(SiO2)利用二階法混合原廠齒輪油製成複合奈米齒輪油(SBHNGO), SBHNGO能兼具BN與 SiO2特性,提高原廠齒輪油磨潤性能。為瞭解添加SBHNGO是否能使原廠齒輪油性能提升,對SBHNGO進行五項基礎實驗與實車實驗。基礎實驗包括沉降、黏度、比熱、導熱及磨潤試驗;實車實驗包含電能消耗實驗、溫度測量實驗及爬坡能力實驗,分別測量其平均行駛公里、耗電量及溫度等數據。SBHNGO製備比例為2.05 wt.%、2.1 wt.%、2.2 wt.%、2.55 wt.%、2.6 wt.%及2.7 wt.%,基礎性質實驗結果顯示,黏度試驗中比原油上升73.26 %、比熱係數下降33.69 %、磨潤試驗耗損量改善35.05 %,實驗綜合評分得知2.6 wt.%為最佳SBHNGO濃度。實車實驗結果顯示,平路定速實驗的平均行駛距離提升4.14 %、爬坡定速實驗平均行駛距離提升1.02 %、平路變速實驗的總耗電量減少1.46 %及爬坡變速實驗總耗電量減少0.29 %。添加SBHNGO能有效地使馬達、齒輪箱、散熱水箱及電池組溫度下降。於爬坡試驗中能使實驗車速到達極速的時間縮減。在2°、4°及6°爬坡時,SBHNGO分別比原油快6 s、6 s及7 s到達極速。
In this study, nano-boron nitride (BN) and nano-silicon dioxide (SiO2) were mixed with the original gear oil by the two-step method to prepare SBHNGO. It was hoped that SBHNGO, having the characteristics contained in BN and SiO2, would perform better than the original gear oil. In order to know whether the using of SBHNGO could improve the performance of the original gear oil, five basic tests and real vehicle tests were conducted on SBHNGO. The basic tests included sedimentation, viscosity, specific heat, thermal conductivity and tribology tests; the real vehicle tests included power consumption test, temperature measurement test and gradeability test, and in each the average mileage, power consumption and temperature were measured. The concentrations in the preparation of SBHNGO were 2.05 wt.%, 2.1 wt.%, 2.2 wt.%, 2.55 wt.%, 2.6 wt.%, and 2.7 wt.%. The outcomes in the basic tests are as follows. The viscosity increased by 73.26 % compared with the original gear oil, the specific heat coefficient decreased by 33.69 %, and the loss in the tribology test decreased by 35.05 %. Comprehensively, the experiment showed that 2.6 wt.% was the best SBHNGO concentration.
The outcomes of the real vehicle experiment are as follows. The average driving distance of the constant speed test on flat roads increased by 4.14 %, the average driving distance of the constant speed climbing test increased by 1.02 %, the total power consumption of the variable speed test on the flat roads reduced by 1.46 %, and the total consumption of the variable speed test on hills reduced by 0.29 %. In temperature measurement, using SBHNGO could effectively reduce the temperature of the motor, gearbox and battery pack. In the climbing test, using SBHNGO could shorten the time for the experimental vehicle to reach the extreme speed. When climbing at 2°, 4° and 6°, the experimental vchicle using SBHNGO could reach the extreme speed about 6 s, 6 s and 7 s faster than the one using the original gear oil respectively.
[1] 經濟部能源局,能源統計專區,取自https://www.esist.org.tw/Database/Detail?CacheKey=21050111101Y05_1_7&ChartType=1&I=0,2022年。
[2] 全國法規資料庫,溫室氣體減量及管理法,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098,2015年。
[3] 國家溫室氣體減量法規資訊網,階段管制目標,取自https://ghgrule.epa.gov.tw/greenhouse_control/greenhouse_control,2022年。
[4] 行政院環境保護署,溫室氣體排放統計,取自https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b,2022年。
[5] 行政院,行政院第3581次院會決議,取自https://www.ey.gov.tw/Page/4EC2394BE4EE9DD0/f449f839-6e2f-4677-b87b-06948c781b87,2017年。
[6] 經濟部工業局,電動機車產業發展推動計畫,取自https://www.moeaidb.gov.tw/external/ctlr?PRO=executive.ExecutiveInfoView&id=10889&lang=0,2018年。
[7] 經濟部工業局,智慧電動機車能源補充設施普及計畫,取自https://www.moeaidb.gov.tw/external/ctlr?PRO=policy.PolicyView&id=10076,2021年。
[8] Q. Wan, Y. Jin, P. Sun, Y. Ding, “Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles”, Procedia Engineering, vol. 102, pp. 1038-1045, 2015.
[9] A. Kotia, G. K. Ghosh, I. Srivastava, P. Deval, S. K. Ghosh, “Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants”, Journal of Alloys and Compounds, vol. 782, pp. 592-599, 2019.
[10] M. K. A. Ali, X. Hou, L. Mai, B. Chen, R. F. Turkson, Q. Cai, “Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives”, Wear, vol. 364-365, pp. 270-281 , 2016.
[11] M. H. Hamzah, N. A. C. Sidik, T. L. Ken, R. Mamat, G. Najafi, “Factors affecting the performance of hybrid nanofluids: A comprehensive review” International Journal of Heat and Mass Transfer, vol. 115, part A, pp. 630-646, 2017.
[12] P. J. L. Fernandes, “Tooth bending fatigue failures in gears”, Engineering Failure Analysis, vol. 3, iss. 3, pp. 219-225, 1996.
[13] Nauman A. Siddiqui, K. M. Deen, M. Zubair Khan, R. Ahmad, “Investigating the failure of bevel gears in an aircraft engine” Case Studies in Engineering Failure Analysis, vol. 1, iss. 1, pp. 24-31, 2013.
[14] H. Liu, C. Zhu, Z. Sun, C. Song, “Starved lubrication of a spur gear pair”, Tribology International, vol. 94, pp. 52-60, 2016.
[15] B. Hu, C. Zhou, H. Wang, S. Chen, “Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition”, Mechanical Systems and Signal Processing, vol. 153, 2021.
[16] R. Prabhu & A. Devaraju, “Failure analysis and restructuring model of transfer feeder gear box in thermal powerplant”, Materials Today: Proceedings, vol. 39, part 1, pp. 633-638, 2021.
[17] T. Chen, C. Zhu, H. Liu, P. Wei, J. Zhu, Y. Xu, “Simulation and experiment of carburized gear scuffing under oil jet lubrication”, Engineering Failure Analysis, vol. 139, 2022.
[18] B.-RHöhn, K Michaelis, “Influence of oil temperature on gear failures”, Tribology International, vol. 37, iss. 2, pp. 103-109, 2004.
[19] W. Li & J. Tian, “Unsteady-state temperature field and sensitivity analysis of gear transmission”, Tribology International, vol. 116, pp. 229-243, 2017.
[20] T. Touret, C. Changenet, F. Ville, M. Lalmi, S. Becquerelle, “On the use of temperature for online condition monitoring of geared systems – A review”, Mechanical Systems and Signal Processing, vol. 101, pp. 197-210, 2018.
[21] Z. Lu, H. Liu, C. Zhu, H. Song, G. Yu, “Identification of failure modes of a PEEK-steel gear pair under lubrication”, International Journal of Fatigue, vol. 125, pp. 342-348, 2019.
[22] Pedro M.T. Marques, Carlos M.C.G. Fernandes, Ramiro C. Martins, Jorge H.O. Seabra, “Efficiency of a gearbox lubricated with wind turbine gear oils”, Tribology International, vol. 71, pp. 7-16, 2014.
[23] A. Ziegltrum, T. Lohner, K. Stahl, “TEHL simulation on the influence of lubricants on load-dependent gear losses”, Tribology International, vol. 113, pp. 252-261, 2017.
[24] T. Ouyang, G. Huang, J. Chen, B. Gao, N. Chen, “Investigation of lubricating and dynamic performances for high-speed spur gear based on tribo-dynamic theory”, Tribology International, vol. 136, pp. 421-431, 2019.
[25] H. Liu, H. Liu, C. Zhu, Robert G. Parker, “Effects of lubrication on gear performance: A review”, Mechanism and Machine Theory, vol. 145, pp. 103701, 2020.
[26] M. Kole & T.K. Dey, “Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil”, Applied Thermal Engineering, vol. 56, iss. 1-2, pp. 45-53, 2013.
[27] L. Yang, M. Mao, J. Huang, W. Ji, “Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: An experimental study”, Powder Technology, vol. 356, pp. 335-341, 2019.
[28] M. Hatami, M. Hasanpour, D. Jing, “Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part III: Nano-coolants”, Journal of Molecular Liquids, vol. 319, pp. 114131, 2020.
[29] R. Dinesh, P. Karuppasamy, S. Kalaiselvam, “An experimental investigation and comprehensive modelling of thermal and rheological behaviour of graphene oxide nano platelets suspended mineral oil nano lubricant”, Journal of Molecular Liquids, vol. 347, pp. 118357, 2022.
[30] W. Dai, B. Kheireddin, H. Gao, H. Liang, “Roles of nanoparticles in oil lubrication”, Tribology International, vol. 102, pp. 88-98, 2016.
[31] M. F. Sgroi, M. Asti, F. Gili, F. A. Deorsola, S. Bensaid, D. Fino, G. Kraft, I. Garcia, F. Dassenoy, “Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction”, Tribology International, vol. 105, pp. 317-325, 2017.
[32] S. ValiShaik, Dev Singh D., A. Patil, “Experimental investigation of tribological properties of TiO2 nanoparticles in engine oil”, Materials Today: Proceedings, vol. 46, part 1, pp. 883-889, 2021.
[33] Elena V. Timofeeva, Michael R. Moravek, D. Singh, “Improving the heat transfer efficiency of synthetic oil with silica nanoparticles”, Journal of Colloid and Interface Science, vol. 364, iss. 1, pp. 71-79, 2011.
[34] A. Kotia, S. Borkakoti, S. K. Ghosh, “Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants”, Particuology, vol. 37, pp. 54-63, 2018.
[35] Y. Singh, A. Singla, A. K. Upadhyay, “Effect of SiO2 as an additive to Mongongo oil during friction and wear characterization”, Materials Today: Proceedings, vol. 46, part 20, pp. 11165-11168, 2021.
[36] D. H. Cho, J. S. Kim, S. H. Kwon, C. Lee, Y. Z. Lee, “Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water”, Wear, vol. 302, iss. 1-2, pp. 981-986, 2013.
[37] José M. Liñeira del Río Enriqueta, R. López, J. Fernández, “Tribological properties of graphene nanoplatelets or boron nitride nanoparticles as additives of a polyalphaolefin base oil”, Journal of Molecular Liquids, vol. 333, pp. 115911, 2021.
[38] T. Akbiyik, N. Kahraman, T. Taner, “Investigation of the effect of boron additive to lubricating oil on engine performance, exhaust, and emissions”, Fuel, vol. 312, pp. 122931, 2022.
[39] W. Yang, Z. Geng, Y. Li, X. Liu, X. Tian, S. Wang, N. Wu, Y. Wang, R. Xu, F. Yang, Y. Li, “Facile synthesis of lipophilic alkylated boron nitride nanosheets as lubricating oil additive to greatly enhance the friction and heat-conducting properties”, Tribology International, vol. 173, pp. 107655, 2022.
[40] A. Saxena, S. Gangwar, G. K. Ghosh, R. K. Patel, V. Chaudhary, “Rheological properties analysis of MWCNT/graphene hybrid-gear oil (SAE EP-90) nanolubricants”, Materials Today: Proceedings, vol. 33, part 8, pp. 5313-5316, 2020.
[41] X. Fan, X. Li, Z. Zhao, Z. Yue, P. Feng, X. Ma, H. Li, X. Ye, M. Zhu, “Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils”, Carbon, vol. 191, pp. 84-97, 2022.
[42] D. Jiao, S. Zheng, Y. Wang, R. Guan, B. Cao, “The tribology properties of alumina/silica composite nanoparticles as lubricant additives”, Applied Surface Science, vol. 257, iss. 13, pp. 5720-5725, 2011.
[43] M. K. A. Ali, P. Fuming, H. A. Younus, M. A. A. Abdelkareem, F. A. Essa, A. Elagouz, X. Hou, “Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives”, Applied Energy, vol. 211, pp. 461-478, 2018.
[44] K. I. Nasser, José M. Liñeira del Río, F. Mariño, Enriqueta R. López, J. Fernández, “Double hybrid lubricant additives consisting of a phosphonium ionic liquid and graphene nanoplatelets/hexagonal boron nitride nanoparticles”, Tribology International, vol. 163, pp. 107189, 2021.
[45] H. Jiang, X. Hou, Karl D. Dearn, D. Su, M. K. A. Ali, “Thermal stability enhancement mechanism of engine oil using hybrid MoS2/h-BN nano-additives with ionic liquid modification”, Advanced Powder Technology, vol. 32, iss. 12, pp. 4658-4669, 2021.
[46] C. Zang, M. Yang, E. Liu, Q. Qian, J. Zhao, J. Zhen, R. Zhang, Z. Jia, W. Han, “Synthesis, characterization and tribological behaviors of hexagonal boron nitride/copper nanocomposites as lubricant additives”, Tribology International, vol. 165, pp.107312, 2022.
[47] N. Rietmann, B. Hügler, T. Lieven, “Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions”, Journal of Cleaner Production, vol. 261, pp. 121038, 2020.
[48] L. Wang, V. Nian, H. Li, J. Yuan, “Impacts of electric vehicle deployment on the electricity sector in a highly urbanised environment”, Journal of Cleaner Production, vol. 295, pp. 126386, 2021.
[49] M. Kucukvar, Nuri C. Onat, Adeeb A. Kutty, Galal M. Abdella, M. E. Bulak, F. Ansari, G. Kumbaroglu, “Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios”, Journal of Cleaner Production, vol. 335, pp. 130291, 2022.
[50] C. Wei, T. Hofman, E. I. Caarls, R. van Iperen, “Energy-Efficiency Improvement Potential of Electric Vehicles Considering Transmission Temperature”, IFAC-PapersOnLine, vol. 52, iss. 15, pp. 211-216, 2019.
[51] Y. Fan, D. Zhan, X. Tan, P. Lyu, J. Rao, “Optimization of cooling strategies for an electric vehicle in high-temperature environment”, Applied Thermal Engineering, vol. 195, pp. 117088, 2021.
[52] X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, Y. Yan, “A critical review on thermal management technologies for motors in electric cars”, Applied Thermal Engineering, vol. 201, part A, pp.117758, 2022.
[53] 行政院經濟部標準檢驗局,標準總號:CNS15819-4,取自:https://www.cnsonline.com.tw/,2015年。
[54] Gogoro 線上支援中心,輪胎胎壓,取自https://support.gogoro.com/tw/how-to/collections/5238806020866982/articles/115003595687/,2022年。
[55] 行政院經濟部標準檢驗局,標準總號:CNS15819-1,取自:https://www.cnsonline.com.tw/,2015年。
[56] 蕭暐亮,“奈米氮化硼齒輪油對機車引擎性能與廢氣排放影響之研究”,國立臺灣師範大學工業教育學系,碩士論文,2019。
[57] 許令霖,“添加複合奈米機油於四行程機車引擎性能與廢氣排放影響之研究”,國立臺灣師範大學工業教育學系,碩士論文,2017。
[58] A. V. Bondarev, A. Fraile, T. Polcar, D. V. Shtansky, “Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation”, Tribology International, vol. 151, pp. 106493, 2020.
[59] J. P. Singh, S. Singh, T. Nandi, S. K. Ghosh, “Development of graphitic lubricant nanoparticles based nanolubricant for automotive applications: Thermophysical and tribological properties followed by IC engine performance”, Powder Technology, vol. 387, pp. 31-47, 2021.