研究生: |
林彥昀 Lin, Yen-Yun |
---|---|
論文名稱: |
應用於FeRAM之鐵電氧化鉿鋯電容特性及穿隧接面元件 Ferroelectric HfZrO2 Capacitor and Ferroelectric Tunnel Junction for FeRAM Application |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 反鐵電材料 、氧化鉿鋯 、鐵電記憶體 、鐵電穿隧接面元件 |
英文關鍵詞: | antiferroelectric materials, HfZrO2, FeRAM, Ferroelectric Tunnel Junction |
DOI URL: | http://doi.org/10.6345/NTNU202001294 |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氧化鉿(HfO2)鐵電(Ferroelectric, FE)特性的發現,可以彌補最新技術節點與鐵電非揮發性記憶體之間的微縮瓶頸。除了非揮發性,新穎的記憶體還應該保證足夠的可靠度並同時具備低延遲及低耗能的特性,與鈣鈦礦鐵電記憶體相比,鐵電鉿基氧化物具備與CMOS製程相容且有利於尺寸微縮的優勢。
本論文第一部份使用氧化鉿鋯(Hf0.5Zr0.5O2)作為元件的鐵電層,以TiN及TaN 分別作為MFM(Metal-Ferroelectric-Metal)的上電極金屬,發現TaN的應力能使鐵電薄膜有著較大的殘餘極化(Remnant Polarization, Pr),達到更好的記憶體特性。根據文獻,因反鐵電(Antiferroelectric, AFE)材料具有高耐久度的特性,故第二部分以高鋯濃度之氧化鉿鋯(HfxZr1-xO2)為鐵電層之MFM用於記憶體特性研究,並且達到耐久度(Endurance)超過1011次,使反鐵電材料能應用於FeRAM。另外,我們也將高鋯濃度之氧化鉿鋯,作為氧化鉿鋯鐵電穿隧接面(Ferroelectric Tunnel Junction, FTJ)元件之鐵電層,並成功區分出高阻態(High-Resistance State, HRS)與低阻態(Low-Resistance State, LRS),證實AFTJ具有成為未來新興記憶體的潛力。
With the discovery of ferroelectricity within hafnium-based oxide, the gap between state-of-the-art technology node and non-volatile memory can be addressed by ferroelectric materials. In addition to non-volatility, emerging memory should simultaneously meet the demand of remarkable reliability, low access latency and low power consumption. Contrary to perovskite-type ferroelectric materials, hafnium-based oxide is compatible with current CMOS processes and beneficial for scaling down.
The first part of this thesis adopts HfZrO2 as the ferroelectric layer. The TiN and TaN are served as capping electrode of MFM (metal-ferroelectric-metal), respectively. The stress from TaN capping metal brings larger remnant polarization of HZO and excellent memory performance. The excellent endurance of Antiferroelectric materials have been reported in some literature. In the second part, high zirconium concentration HfZrO2 integrated with MFM is studied for memory operation, and a superior 1011 cycles endurance is obtained. Beside, high-resistance state (HRS) and low-Resistance State (LRS) of antiferroelectric FTJ can be clearly distinguished for read-out. AFTJ has potential to be next generation emerging memory.
[1] C. Matsui, K. Takeuchi, ” Step-by-Step Design of memory hierarchy for heterogeneously-integratedSCM/NANDflash storage, ” ScienceDirect, vol. 69, pp. 62-74, 2019.
[2] N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H.Lee, and Y.-S. Kang, “Processing, Structure, Properties, and Applications of PZT Thin Films, ” Solid State and Materials Sciences, vol. 32, pp 111-202, 2007.
[3] T. Boescke, J. Heitmann, U. Schroder, “Integrated circuit with dielectric layer, ” US 7,709,359 B2, 2010 (Filing date 2007-09-05).
[4] T. S. Bösckea, J. Müllerb, D. Bräuhausc, U. Schröderd, and U. Böttgerc, “Ferroelectricity in Hafnium Oxide: CMOS compatible Ferroelectric Field Effect Transistors, ” in IEDM Tech. Dig., Dec. 2011, pp. 255-258.
[5] P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Müller, “Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory Applications, ” International Memory Workshop, Session 5-2, May . 2014.
[6] C. H. Cheng and A. Chin, “Low-Leakage-Current DRAM-Like Memory Using a One-Transistor Ferroelectric MOSFET With a Hf-Based Gate Dielectric, ” IEEE Electron Device Lett., vol. 35, no. 1, pp. 138-140, Jan. 2014.
[7] C. H. Cheng and A. Chin, “Low-Voltage Steep Turn-On pMOSFET Using Ferroelectric High-κ Gate Dielectric, ” IEEE Electron Device Lett., vol. 35, no. 2, pp. 274-276, Feb. 2014.
[8] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon,K. D. Kim, and C. S. Hwangn, “Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, ” Nano Energy, vol. 12, pp. 131-140, 2015.
[9] Y. C. Chiu, C. H. Cheng, C. Y. Chang, M. H. Lee, H. H. Hsuand, and S. S. Yen, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance, ” in VLSI Technology Symp., Jun. 2015, pp. 184-185.
[10] S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, and M. Saitoh, “First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, ” in VLSI Technology Symp., Jun. 2016, pp. 978-979.
[11] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel ferroelectric FET based synapse for neuromorphic systems, ” in VLSI Technology Symp., Jun. 2017, pp. 176-177.
[12] R. Eskandari, X. Zhang, and L. M. Malkinski, “Polarization-dependent photovoltaic effect in ferroelectric-semiconductor system, ” Appl. Phys. Lett., vol. 110, 2017, Art. no. 121105.
[13] M. Dragoman, M. Aldrigo, M. Modreanu, and D. Dragoman, “Extraordinary tunability of high-frequency devices using Hf0.3Zr0.7O2 ferroelectric at very low applied voltages, ” Appl. Phys. Lett., vol. 110, 2017, Art. no. 103104,
[14] J. V. Houdt, “Memory Technology for the Terabit Era: from 2D to 3D, ” in VLSI Technology Symp., Jun. 2017, pp. 24-25.
[15] S. W. Smith, A. R. Kitahara, M. A. Rodriguez, M. D. Henry, and M. T. Brumbach, and J. F. Ihlefeld, “Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films, ” Appl. Phys. Lett., vol. 110, 2017, Art. no. 072901.
[16] F. Huang, Y. Wang, X. Liang, J. Qin, Y. Zhang, X. Yuan, Z. Wang, B. Peng, L. Deng, and Q. Liu, “HfO2-Based Highly Stable Radiation-Immune Ferroelectric Memory, ” IEEE Electron Device Lett., vol. 38, no. 3, pp. 330-333, Mar. 2017.
[17] S. Müller, H. Mulaosmanovic, S. Slesazeck, J. Müller, and T. Mikolajick, “CMOS Compatible Ferroelectric Devices for Beyond 1X nm Technology Nodes, ” in SSDM (International Conference on Solid State Devices and Materials), Sep. 2017, pp. 539-540.
[18] J. Müller, T. S. Böscke, U. Schröder, Stefan Mueller, D. Bräuhaus, U. Böttger, L. Frey and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2, “ Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012.
[19] M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K.D. Kim, Franz P. G. Fengler, T. Mikolajick, U. Schroeder, and C. S. Hwang, “ Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, ” Nanoscale, vol. 9, pp. 9973-9986, 2017.
[20] T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T. J. Konno, and H. Funakubo, “Effect of the film thickness on the crystal structure and ferroelectric properties of (Hf0.5Zr0.5)O2 thin films deposited on various substrates, ” Materials Science in Semiconductor Processing, vol. 70, pp. 239-245, 2017.
[21] Premier II Ferroelectric Test System Brochure, pp. 1-2.
[22] B1500A Semiconductor Device Analyzer user’s manual, pp. 1,4-2,32.
[23] B1525A (B1500A-A25, B1500AU-025) High Voltage Semiconductor Pulse Generator Unit.
[24] Agilent B1530A Waveform Generator/Fast Measurement Unit, pp. 1,5-2,12.
[25] https://xiaoshanxu.unl.edu/system/files/sites/unl.edu.cas.physics.xiaoshan-xu/files/private/2016_01_29%20Yin_Ferroelectric%20measurement.pdf.
[26] Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, “The Scherrer equation versus the ‘Debye-Scherrer equation’, ” Nature Nanotechnology, vol. 6, pp 534, 2011.
[27] M. Pešić, S. Knebel, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schroeder, “How to make DRAM non-volatile? Antiferroelectrics: A new paradigm for universal memories,” in IEDM Tech. Dig., Dec. 2016, pp. 298-301.
[28] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, “Review and perspective on ferroelectric HfO2-based thin films for memory applications,” MRS Communications, vol. 8, no. 3, pp. 795-808, Sep. 2018.
[29] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, and T. Hiramoto, “Ferroelectric HfO2 Tunnel Junction Memory With High TER and Multi-Level Operation Featuring Metal Replacement Process, ” Journal of Electron Devices Society, vol. 7, pp. 134-139, 2019.
[30] H. H. Huang, T. Y. Wu, Y. H. Chu, M. H. Wu, C. H. Hsu, H. Y. Lee, S. S. Sheu, W. C. Lo, and T. H. Hou, “A Comprehensive Modeling Framework for Ferroelectric Tunnel Junctions, ” in IEDM Tech. Dig., Dec. 2019, pp. 298-301.
[31] T. Y. Wu, H. H. Huang, Y. H. Chu, C. C. Chang, M. H. Wu, C. H. Hsu, C. T. Wu, M. C. Wu, W. W. Wu, T. S. Chang, H. Y. Lee, S. S. Sheu, W. C. Lo, and T. H. Hou, “Sub-nA Low-Current HZO Ferroelectric Tunnel Junction for High-Performance and Accurate Deep Learning Acceleration, ” in IEDM Tech. Dig., Dec. 2019, pp. 118-121.
[32] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu , and M. Liu, “Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films, ” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1207-1210, Aug. 2018.
[33] J. Müller, T.S. Bösckee, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin , T. Schenk , K. Khullar , A. Kersch , W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Boschke, R. van Bentum, U. Schröder, and T. Mikolajick, “Ferroelectric Hafnium Oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories, ” in IEDM Tech. Dig., Dec. 2013, pp. 280-283.