簡易檢索 / 詳目顯示

研究生: 鄭博文
Cheng, Po-Wen
論文名稱: 以均苯四甲酸合成鈦金屬有機框架應用於二氧化氮感測器之研製
Synthesis of titanium metal organic framework with pyromellitic acid developed for NO2 gas sensor
指導教授: 楊啓榮
Yang, Chii-Rong
口試委員: 曾釋鋒
Tseng, Shih-Feng
黃茂榕
Huang, Mao-Jung
鄧敦平
Teng, Tun-Ping
楊啓榮
Yang, Chii-Rong
口試日期: 2022/08/26
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 氣體感測器金屬有機框架均苯四甲酸水熱法響應值
英文關鍵詞: Gas sensor, Metal organic framework, Pyromellitic acid, Hydrothermal method, Response
DOI URL: http://doi.org/10.6345/NTNU202201681
論文種類: 學術論文
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 前言 1 1.2 金屬有機框架簡介 2 1.3 過渡金屬簡介 4 1.4 氣體感測器簡介 5 1.5 研究動機與目的 10 1.6 論文架構 11 第二章 文獻回顧 12 2.1 氣體感測器 12 2.1.1 催化燃燒氣體感測器 13 2.1.2 紅外線氣體感測器 15 2.1.3 電化學氣體感測器 19 2.1.4 半導體氣體感測器 23 2.2 金屬有機框架 29 2.2.1 不同金屬種類的MOF材料 29 2.2.2 MOF的材料結構 35 2.3 MOF在氣體感測之應用 40 第三章 實驗設計與規劃 49 3.1 實驗程序規劃 49 3.1.1 Ti-MOF之開發 51 3.1.2 Ti-MOF製備之氣體感測器與性能測試 53 3.2 實驗器材 54 第四章 結果與討論 60 4.1 三種Ti-MOF材料之製備 60 4.1.1 Ti-MOF(TPA)之形貌分析 60 4.1.2 Ti-MOF(TMA)之形貌分析 63 4.1.3 Ti-MOF(PMA)之形貌分析 65 4.2 煅燒後之三種Ti-MOF材料 67 4.2.1 煅燒後Ti-MOF(TPA)之形貌分析 67 4.2.2 煅燒後Ti-MOF(TMA)之形貌分析 73 4.2.3 煅燒後Ti-MOF(PMA)之形貌分析 79 4.3 三種Ti-MOF之材料分析 85 4.3.1 三種Ti-MOF之XRD分析 85 4.3.2 三種Ti-MOF之FT-IR分析 86 4.3.3 三種Ti-MOF之Raman分析 87 4.3.4 三種Ti-MOF之BET分析 88 4.4 氣體感測性能量測 89 4.4.1 三種Ti-MOF之感測性能 91 4.4.2 Ti-MOF(PMA)之NO2氣體感測 93 4.4.3 Ti-MOF(PMA)之氣體感測機制 102 4.4.4 NO2感測材料之性能比較表 104 第五章 結論與未來展望 106 5.1 結論 106 5.2 未來展望 108 參考文獻 109

    1. https://en.wikipedia.org/wiki/Nitrogen_dioxide.
    2. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu. Z. Xie, F. Guo. D. Chen, R. Zhang, Y. Zheng, A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets, Sensors and Actuators B: Chemical, 337, 129783, 2021.
    3. ToxFAQs™ for nitrogen oxides, Agency for Toxic Substances and Disease Registry, 2002.
    4. S. H. Wang, T. C. Chou, C. C. Liu, Nano-crystalline tungsten oxide NO2 sensor, Sensors and Actuators B: Chemical, 94, 343-351, 2003.
    5. Y. Su, M. Yao, G. Xie, H. Pan, H. Yuan, M. Yang, H. Tai, X. Du, and Y. Jiang, Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect, Applied Physics Letters, 115, 073504, 2019.
    6. N. Yamazoe, K. Shimanoe, New perspectives of gas sensor technology, Sensors and Actuators B: Chemical, 138(1) 100-107, 2009.
    7. A. M. Ebrahim, B. Levasseur, T. J. Bandosz, Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions, ACS Applied Materials & Interfaces, 29(1) 168-174, 2013.
    8. M. S. Yao, W. X. Tang, G. E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance, Advanced Materials, 28, 5229-5234, 2016.
    9. F. Zhai, Q. Zheng, Z. Chen, Y. Ling, X. Liu, L. Weng, Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO2, CrystEngComm, 15, 2040-2043, 2013.
    10. N. A. Janabi, P. Hill, L. T. Murciano, A. Garforth, P. Gorgojo, F. Siperstein, Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases, Chemical Engineering Journal, 281, 669-677, 2015.
    11. J. L. Rowsell, O. M. Yaghi, Strategies for hydrogen storage in metal-organic frameworks, Angewandte Chemie, 44, 4670-4679, 2005.
    12. K. S. Lin, A. K. Adhikari, C. N. Ku, C. L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage, International Journal of Hydrogen Energy, 37, 13865-13871, 2012.
    13. R. Ranjan, M. Tsapatsis, Microporous metal organic framework membrane on porous support using the seeded growth method, Chemistry of Materials, 21, 4920-4924, 2009.
    14. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, Metal organic frameworks for energy storage and conversion, Energy Storage Materials, 2, 35-62, 2016.
    15. H. Wang, Q. L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications, Chem, 2, 52-80, 2017.
    16. A. Y. Kim, M. K. Kim, K. Cho, J. Y. Woo, Y. Lee, S. H. Han, One-step catalytic synthesis of CuO/Cu2O in a graphitized porous C matrix derived from the Cu-based metal-organic framework for Li- and Na-ion batteries, ACS Applied Materials & Interfaces, 8, 19514-19523, 2016.
    17. R. Ricco, M. J. Styles, P. Falcaro, 12 - MOF-based devices for detection and removal of environmental pollutants, Metal-Organic Frameworks (MOFs) for Environmental Applications, 383-426, 2019. 
    18. S. Yuvaraja, S. G. Surya, V. Chernikova, M. T. Vijjapu, O. Shekhah, P. M. Bhatt, S. Chandra, M. Eddaoudi, K. N. Salama, Realization of an ultrasensitive and highly selective OFET NO2 sensor: the synergistic combination of PDVT-10 polymer and porphyrin-MOF, ACS Applied Materials & Interfaces, 12, 18748-18760, 2020.
    19. W. M. Bloch, A. Burgun, C. J. Coghlan, R. Lee, M. L. Coote, C. J. Doonan,
    Capturing snapshots of post-synthetic metallation chemistry in metal-organic frameworks, Nature Chemistry, 6, 906-912, 2014.
    20. H. C. J. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs), Chemical Society Reviews, 43, 5415-5418, 2014.
    21. Q. Yang, Q. Xu, H. L. Jiang, Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chemical Society Reviews, 46, 4774-4808, 2017.
    22. A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chemical Society Reviews, 47, 8134-8172, 2018.
    23. M. Lan, X. Wang, R. Zhao, M. Dong, L. Fang, L. Wang, Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors, Journal of Alloys and Compounds, 821, 153546, 2020.
    24. E. N. Augustus, A. Nimibofa, I. A. Kesiye, W. Donbebe, Metal-organic frameworks as novel adsorbents: a preview, American Journal of Environmental Protection, 5(2), 61-67, 2017.
    25. Maximize Market Research, Global nano metal oxide market: industry analysis and forecast (2020-2026) by product, applications, and region, 103545, 2021.
    26. T. H. Kim, Y. H. Kim, S. Y. Park, S. Y. Kim, H. W. Jang, Two-dimensional transition metal disulfides for chemoresistive gas sensing: perspective and challenges, Chemosensors, 5(2) 2017.
    27. M. E. Khalloufi, O. Drevelle, G. Soucy, Titanium: an overview of resources and production methods, Minerals, 11(12) 2021.
    28. M.J. Friedrich, WHO’s top health threats for 2019, JAMA Network, 321(11) 2019.
    29. SGX Article, The pellistor is dead? Long live the pellistor, 2014.
    30. T. V. Dinh, I. Y. Choi, Y. S. Son, J. C. Kima, A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction, Sensors and Actuators B: Chemical, 231, 529-538, 2016.
    31. O. A. M. Popoola, G. B. Stewart, M. I. Mead, R. L. Jones, Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability, Atmospheric Environment, 147, 330-343, 2016.
    32. N. Yamazoe, K. Shimanoe, 1 - Fundamentals of semiconductor gas sensors, Semiconductor Gas Sensors, 3-34, 2013.
    33. Grand View Research, Gas sensor market size, share & trends analysis report by product, by type, by technology, by end use, by region, and segment forecasts, 2021-2028, 2021.
    34. D. Nagai, M. Nishibori, T. Itoh, T. Kawabe, K. Sato, W. Shin, Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films, Sensors and Actuators B: Chemical, 206, 488-494, 2015.
    35. P. Rodlamul, S. Tamura, N. Imanaka, Effect of p- or n-type semiconductor on CO sensing performance of catalytic combustion-type CO gas sensor with CeO2-ZrO2-ZnO based catalyst, Bulletin of the Chemical Society of Japan, 92, 585-591, 2019.
    36. T. Zhou, T. Wu, Q. Wu, C. Ye, R. Hu, W. Chen, X. He, Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor, Optics Express, 28(8) 10970-10980, 2020.
    37. M. Xu, Y. Xu, J. Tao, Y. Li, Q. Kang, D. Shuc, T. Li, Y. Liu, A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection, Sensors and Actuators A: Physical, 331, 112953, 2021.
    38. M. Struzik, I. Garbayo, R. Pfenninger, J. L. M. Rupp, A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring, Advanced Materials, 30, 1804098, 2018.
    39. P. Silambarasan, I. S. Moon, Real-time monitoring of chlorobenzene gas using an electrochemical gas sensor during mediated electrochemical degradation at room temperature, Journal of Electroanalytical Chemistry, 894, 115372, 2021.
    40. Y. Yin, Y. Shen, P. Zhou, R. Lu, A. Li, S. Zhao, W. Liu, D. Wei, K. Wei, Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor, Applied Surface Science, 509, 145335, 2020.
    41. G. Chaloeipote, R. Prathumwan, K. Subannajui, A. Wisitsoraat, C. Wongchoosuk, 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature, Materials Science in Semiconductor Processing, 123, 105546, 2021.
    42. V. L. Patila, S. A. Vanalakar, S. S. Shendage, S. P. Patil, A. S. Kamble, N. L. Tarwal, K. K. Sharma, J. H. Kim, P. S. Patil, Fabrication of nanogranular TiO2 thin films by SILAR technique: Application for NO2 gas sensor, Inorganic and Nano-Metal Chemistry, 49(7) 191-197, 2019.
    43. Z. Zhu, S. J. Lin, C. H. Wu, R. J Wu, Synthesis of TiO2 nanowires for rapid NO2 detection, Sensors and Actuators A: Physical, 272, 288-294, 2018.
    44. W. Sun, J. Ma, Z. Xi, Y. Lin, B. Wang, C. Hao, Titanium oxide-coated titanium-loaded metal organic framework (MOF-Ti) nanoparticles show improved electrorheological performance, Royal Society of Chemistry, 16, 9292-9305, 2020.
    45. J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors, Applied Surface Science, 483, 1158-1165, 2019.
    46. C. Arul, K. Moulaee, N. Donato, D. Iannazzo, N. Lavanya, G. Neri, C. Sekar, Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures, Sensors and Actuators: B. Chemical, 329, 2021.
    47. X. Ren, Z. Xu, D. Liu, Y. Li, Z. Zhang, Z. Tang, Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles, Sensors and Actuators B: Chemical, 357, 131384, 2022.
    48. K. Tao, X. Han, Q. Yin, D. Wang, L. Han, L. Chen, Metal-organic frameworks-derived porous In2O3 hollow nanorod for high-performance ethanol gas sensor, ChemistrySelect, 2, 10918-10925, 2017.
    49. X. Li, Y. Zhang, Y. Cheng, X. Chen, W. Tan, MOF-derived porous hierarchical ZnCo2O4 microflowers for enhanced performance gas sensor, Ceramics International, 47(7) 9214-9224, 2021.
    50. L. Guo, Y. Wang, Y. Shang, X. Yang, S. Zhang, G. Wang, Y. Wang, B. Zhang, Z. Zhang, Preparation of Pd/PdO@ZnO-ZnO nanorods by using metal organic framework templated catalysts for selective detection of trimethylamine, Sensors and Actuators B: Chemical, 350, 130840, 2022.
    51. Z. Liu, Y. Wu, J. Chen, Y. Li, J. Zhao, K. Gao, P. Na, Effective elimination of As(III) via simultaneous photocatalytic oxidation and adsorption by a bifunctional cake-like TiO2 derived from MIL-125(Ti), Catalysis Science & Technology, 8, 1936-1944, 2018.
    52. P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor, Journal of Colloid and Interface Science, 518, 57-68, 2018.
    53. M. A. Moreira, M. P. S. Santos, C. G. Silva, J. M. Loureiro, J. S. Chang, C. Serre, A. F. P. Ferreira, A. E. Rodrigues, Adsorption equilibrium of xylene isomers and ethylbenzene on MIL-125(Ti)_NH2: the temperature influence on the para-selectivity, Adsorption, 24, 715-724, 2018.
    54. Z. H. Rada, H. R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun, S. Wang, Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs, Fuel, 160, 318-327, 2015.
    55. V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy, S. Muralidharan, An insight on the electrocatalytic mechanistic study of pristine Ni MOF (BTC) in alkaline medium for enhanced OER and UOR, ChemElectroChem, 5, 2795-2807, 2018.
    56. P. Luo, S. Li, Y. Zhao, G. Ye, C. Wei, Y. Hu, C. Wei, In-situ growth of a bimetallic cobalt-nickel organic framework on iron foam: Achieving the electron modification on a robust self-supported oxygen evolution electrode, ChemCatChem, 11(24) 6061-6069, 2019.
    57. S. Sheng, Z. Zhang, M. Wang, X. He, C. Jiang, Y. Wang, Synthesis of MIL-125(Ti) derived TiO2 for selective photoelectrochemical sensing and photocatalytic degradation of tetracycline, Electrochimica Acta, 420, 140441, 2022.
    58. S. Li, L. Xie, M. He, X. Hu, G. Luo, C. Chen, Z. Zhu, Metal-Organic frameworks-derived bamboo-like CuO/In2O3 heterostructure for high-performance H2S gas sensor with low operating temperature, Sensors and Actuators B: Chemical, 310, 127828, 2020.
    59. X. Ren, Z. Xu, D. Liu, Y. Li, Z. Zhang, Z. Tang, Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles, Sensors and Actuators B: Chemical, 357, 131384, 2022.
    60. T. Ueda, M. Sakai, K. Kamada, T. Hyodo, Y. Shimizu, Effects of composition and structure of sensing electrode on NO2 sensing properties of mixed potential-type YSZ-based gas sensors, Sensors and Actuators B: Chemical, 237, 247-255, 2016.
    61. S. Liu, M. Wang, G. Liu, N. Wan, C. Ge, S. Hussain, H. Meng, M. Wang, G. Qiao, Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in-situ formation of Schottky barrier, Applied Surface Science, 567, 150747, 2021.
    62. R. S. Sabry, I. R. Agool, A. M. Abbas, Hydrothermal synthesis of In2O3: Ag nanostructures for NO2 gas sensor, Silicon, 11, 2475-2478, 2019.
    63. H. Yan, L. Chu, Z. Li, C. Sun, Y. Shi, J. Ma, 2H-MoS2/Ti3C2Tx MXene composites for enhanced NO2 gas sensing properties at room temperature, Sensors and Actuators Reports, 4, 100103, 2022.
    64. R. Gao, L. Gao, X. Zhang, S. Gao, Y. Xua, X. Cheng, G. Guo, Q. Ye, X. Zhou, Z. Major, L. Huo, The controllable assembly of the heterojunction interface of the ZnO@rGO for enhancing the sensing performance of NO2 at room temperature and sensing mechanism, Sensors and Actuators B: Chemical, 342, 130073, 2021.
    65. R. Kumar, N. Goel, M. Kumar, UV-Activated MoS2 based fast and reversible NO2 sensor at room temperature, ACS Sensors, 2, 1744-1752, 2017.
    66. S. Y. Cho, S. J. Kim, Y. Lee, J. S. Kim, W. B. Jung, H. W. Yoo, J. Kim, H. T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers, ACS Nano, 9, 9, 9314-9321, 2015.
    67. W. Li, Y. Zhang, X. Long, J. Cao, X. Xin, X. Guan, J. Peng, X. Zheng, Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection, Sensors, 19, 2123, 2019.
    68. X. Liu, J. Sun, X. Zhang, Novel 3D graphene aerogel-ZnO composites as efficient detection for NO2 at room temperature, Sensors and Actuators B: Chemical, 211, 220-226, 2015.
    69. J. Zhang, D. Zeng, Q. Zhu, J. Wu, K. Xu, T. Liao, G. Zhang, C. Xie, Effect of grain-boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO2, The Journal of Physical Chemistry C, 119, 17930-17939, 2015.

    無法下載圖示 電子全文延後公開
    2027/09/23
    QR CODE