簡易檢索 / 詳目顯示

研究生: 江孟格
Chiang, Meng-Ke
論文名稱: 高壓氧對第十七型脊髓小腦運動失調症小鼠的治療效果
The effect of hyperbaric oxygen on SCA17 mice
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 第十七型脊髓小腦運動失調症基因轉殖小鼠高壓氧治療
英文關鍵詞: Spinocerebellar ataxia type 17, transgenic mice, hyperbaric oxygen therapy
DOI URL: http://doi.org/10.6345/NTNU201900438
論文種類: 學術論文
相關次數: 點閱:522下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第十七型脊髓小腦運動失調症 (SCA17) 是一種體染色體顯性遺傳神經退化性疾病,患者有漸進式的小腦萎縮、共濟失調、癲癇及認知障礙等病徵。然而,目前沒有任何具有顯著療效的藥物可以治療SCA17。本研究旨在探討高壓氧治療(HBOT)對SCA17 TG小鼠行為改善及神經保護的作用。HBOT是一種無痛、較為非侵入性的治療方式,患者於充滿100%氧氣且高壓的艙室中進行治療;目前已知可用於治療一氧化碳中毒、動脈栓塞、創傷性腦損傷、燒燙傷及減壓病(潛水夫病)等;目前已有文獻證實,HBOT可以降低發炎反應的發生、改善組織缺氧的狀態,並促使微血管增生。本研究採用SCA17基因轉殖小鼠,進行各式行為實驗(曠野實驗、Y字迷宮、步態分析及滾輪測試)評估其運動和空間記憶的能力;經過HBOT,我們發現SCA17 TG小鼠的焦慮情況、短期記憶及運動協調能力有顯著地改善。我們也以每個月進行一次行為實驗之方式得知HBOT效果的持續性可以維持三個月。而輕微高壓氧(M-HBOT)能夠使小鼠短期記憶及運動協調能力有顯著地改善。在小腦組織病理切片結果中,我們發現,HBOT降低了SCA17 TG小鼠小腦中Purkinje cell丟失,也使其排列順序變整齊、細胞本體較為飽滿及神經纖維密度上升;也發現HBOT能夠抑制SCA17 TG小鼠減緩其神經發炎反應astrocyte及microglia的發生;另外,經HBOT之SCA17 TG小鼠與記憶相關及細胞增殖之蛋白路徑AKT/CaMKII -ERK-CREB在小腦中磷酸化之蛋白表現量有顯著的上升。因此,我們認為研究結果說明HBOT對於SCA17具有治療的發展潛力。

    Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited neurodegenerative disease. Patients show progressive cerebellar atrophy, ataxia, epilepsy and dementia. However, no drug with significant effect on the treatment of SCA17 has been developed. This study was designed to investigate the effects of hyperbaric oxygen therapy (HBOT) on neuroprotection in SCA17 TG mice. HBOT is a painless, less-invasive treatment that is widely used for carbon monoxide poisoning, arterial embolism, traumatic ischemia, burns and decompression sickness. Patients are treated in a cabinet with high atmospheric pressure and 100% oxygen for a period of time. It is reported HBOT reduces the inflammatory re-sponse and hypoxia in tissue, and improves microvascular proliferation. In this study, behavior tests on SCA17 transgenic mice were performed before and after HBOT, including the open-field, Y-maze, footprint and rotarod. The results showed that HBOT had no effect in the improvement of hyperactivity and gait ataxia according to the open-field and footprint tests, while the results from open-field, Y-maze and rotarod tests showed HBOT significantly improved the anxiety, short-term memory and motor-coordination of SCA17 mice. After the monthly behavioral evaluation, we learned that the duration of this HBOT effect can be lasted for three months. However, mild hyperbaric oxygen (M-HBOT) can only significantly improve short-term memory and motor coordination in SCA17 mice. Therefore, we believed that HBOT has therapeutic potential for SCA17. In the pathological examination of cerebellum, we found that HBOT reduced the loss of Purkinje cells in the cerebellum of SCA17 TG mice, made the cells in a more order pattern, enlarged the cell body , and the increased the nerve fiber density. It was also found that HBOT ameliorated the neuroinflammatory response of SCA17 mice. In addition, the HBOT increased the proteins associated with memory pathway, AKT/CaMKII, ERK, and CREB in the mouse cerebellum. These findings suggest that HBOT has therapeutic potential for SCA17.

    目錄 1. 中文摘要 1 2. Abstract 3 3. 縮寫表 5 4. 研究背景 9 4.1 多麩醯胺酸擴增疾病(Polyglutamine expansion diseases) 9 4.2 脊髓小腦運動共濟失調症(Spinocerebellar ataxias) 10 4.3 第十七型脊髓小腦共濟失調症(SCA17) 11 4.4 Purkinje cell (PC) 12 4.5 神經退化性疾病與氧化壓力(Neurodegenerative diseases with oxidative stress) 13 4.6 神經發炎(Neuroinflammation) 14 4.7 SCA17基因轉殖小鼠(SCA17 transgenic mice, SCA17 TG mice) 15 4.8 高壓氧治療 (Hyperbaric oxygen treatment, HBOT) 15 5. 研究目的研究動機與目的 17 6. 材料與方法 18 6.1 基因轉殖小鼠之產生及飼育 18 6.2 基因轉殖鼠之基因型分析 (Genotyping) 18 6.3 高壓氧治療 (Hyperbaric oxygen therapy, HBOT) 20 6.4 高壓氧治療效果持續性實驗設計 20 6.5 高壓氧治療效果病理與行為分析之實驗設計 21 6.6 小鼠血液相關分析 21 6.7 氧化壓力測定 22 6.8 輕微高壓氧治療(Mild-HBOT)效果實驗設計 24 6.9 西方墨點法 (Western blotting) 25 6.10 小腦冷凍切片 26 6.11 免疫螢光染色 (Immunofluorescence staining, IF) 26 6.12 免疫組織化學染色 (Immunohistochemistry, IHC) 27 6.13 動物行為分析 28 曠野試驗(Open field) 28 Y字迷宮(Y-maze) 29 步態分析(Footprint) 30 滾輪測試(Rota-rod task) 30 6.14 統計分析(Statistical analysis) 31 7. 研究結果 32 7.1 HBOT對小鼠行為之影響與治療持續性 32 7.2 HBOT對TG-HBO小鼠小腦中calbindin與GFAP蛋白表現量之影響 33 7.3 HBOT對小鼠氧化壓力之影響 34 7.4 HBOT對促進小鼠小腦神經細胞增殖及改善認知障礙相關蛋白表現之影響 35 7.5 HBOT對分子伴侶介導的自噬作用 (Chaperone-mediated autophagy, CMA) 相關蛋白HSC70表現之影響 36 7.6 HBOT對小鼠小腦中樹突生長相關蛋白GAD67表現程度之影響 36 7.7 以小腦組織切片免疫螢光染色評估HBOT對小鼠小腦蛋白表現之影響 37 7.8 以小腦組織切片IHC染色評估HBOT對小鼠小腦microglia之影響 39 7.9 以小量動物實驗評估輕微高壓氧治療 (Mild HBOT, M-HBOT) 對SCA17 TG小鼠之效果 39 7.10 血液檢查評估HBOT對小鼠基礎健康狀況之影響 40 8. 討論 42 9. 參考資料 50 10. 圖表 62 圖1、HBOT對小鼠行為之影響與治療持續性 62 圖2、分析HBOT對SCA17 TG小鼠小腦中calbindin與GFAP蛋白表現量之影響 66 圖3、分析HBOT對小鼠氧化壓力之影響 68 圖4、分析HBOT對促進小鼠小腦神經細胞增殖及改善認知障礙相關蛋白表現之影響 70 圖5、分析HBOT對分子伴侶介導的自噬作用 (Chaperone-mediated autophagy, CMA) 相關蛋白HSC70表現之影響 76 圖6、分析HBOT對小鼠小腦中樹突生長相關蛋白GAD67表現程度之影響 77 圖7、以小腦組織切片免疫螢光染色評估HBOT對小鼠小腦蛋白表現之影響 78 圖8、小腦組織切片進行IHC染色評估HBOT對小鼠小腦microglia之影響及定量結果 86 圖9、評估M-HBOT對小鼠之神經保護效果 88 圖10、以血液檢查評估HBOT對小鼠之影響 90 圖11、HBOT可能活化細胞增殖及神經保護之分子機制相關路徑 94 表一、抗氧化檢測試劑組Trolox標準品配置方法 95 表二、初級抗體列表 96 表三、次級抗體列表 97 表四、行為實驗總表 97 表五、公鼠蛋白質分析總表 98 表六、母鼠蛋白質分析總表 99 表七、公鼠腦片免疫螢光染色及免疫化學染色定量總表 100 表八、母鼠腦片免疫螢光染色及免疫化學染色定量總表 101 11、補充資料 102 11.1 國家實驗動物中心肝腎病理分析報告 102

    Araujo, J., P. Breuer, S. Dieringer, S. Krauss, S. Dorn, K. Zimmermann,
    A. Pfeifer, T. Klockgether, U. Wuellner and B. O. Evert (2011). "FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3." Hum. Mol. Genet. 20(15): 2928-2941.
    Asano, T., E. Kaneko, S. Shinozaki, Y. Imai, M. Shibayama, T. Chiba,
    M. Ai, A. Kawakami, H. Asaoka and T. Nakayama (2007). "Hyperbaric oxygen induces basic fibroblast growth factor and hepatocyte growth factor expression, and enhances blood perfusion and muscle regeneration in mouse ischemic hind limbs." Circ. J. 71(3): 405-411.
    Barnham, K. J., C. L. Masters and A. I. Bush (2004). "Neurodegenerative
    diseases and oxidative stress." Nature Reviews Drug Discovery 3: 205.
    Benedetti, S., A. Lamorgese, M. Piersantelli, S. Pagliarani, F. Benvenuti
    and F. Canestrari (2004). "Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen." Clin. Biochem. 37(4): 312-317.
    Chang, Y.-C., C.-W. Lin, C.-M. Hsu, G.-J. Lee-Chen, M.-T. Su, L.-S. Ro,
    C.-M. Chen, H.-J. Huang and H. M. Hsieh-Li (2016). "Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels." Brain Res. 1639: 132-148.
    Chang, Y.-C., C.-Y. Lin, C.-M. Hsu, H.-C. Lin, Y.-H. Chen, G.-J. Lee-
    Chen, M.-T. Su, L.-S. Ro, C.-M. Chen and H. M. Hsieh-Li (2011). "Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17." J. Neurochem. 118(2): 288-303.
    Chebib, M. and G. A. Johnston (1999). "The ‘ABC’of GABA receptors: a
    brief review." Clin. Exp. Pharmacol. Physiol. 26(11): 937-940.
    Chen, C.-Y., W.-Y. Chou, J.-Y. Ko, M. S. Lee and R.-W. Wu (2019).
    "Early Recovery of Exercise-Related Muscular Injury by HBOT." BioMed Research International 2019.
    Chen, X., Y. Li, W. Chen, Z. Nong, J. Huang and C. Chen (2016).
    "Protective Effect of Hyperbaric Oxygen on Cognitive Impairment Induced by D-Galactose in Mice." Neurochem. Res. 41(11): 3032-3041.
    Cheng, Q. and H. H. Yeh (2005). "PLCγ signaling underlies BDNF
    potentiation of Purkinje cell responses to GABA." J. Neurosci. Res. 79(5): 616-627.
    Chiang, I. H., S. C. Chang and C. H. Wang (2017). "Management of
    necrotising fasciitis secondary to abdominal liposuction using a combination of surgery, hyperbaric oxygen and negative pressure wound therapy in a patient with burn scars." Int. Wound J. 14(6): 989-992.
    Choi, J., H.-J. Kwon, J.-E. Lee, Y. Lee, J.-Y. Seoh and P.-L. Han (2019).
    "Hyperoxygenation revitalizes Alzheimer’s disease pathology through the upregulation of neurotrophic factors." Aging Cell 18(2): e12888.
    Dan, G., X. Xiaohong and Z. Weining (1999). "THE EFFECT OF
    HYPERBARIC OXYGENATION MEMORY ABILITY AND ON BRAIN SYNAPTOSOME Ca~(2+) IN AGED-MICE." JOURNAL OF CHINESE PSYCHOLOGY ACTA PSYCHOLOGICA SINICA(2): 15.
    Dennog, C., A. Hartmann, G. Frey and G. Speit (1996). "Detection of
    DNA damage after hyperbaric oxygen (HBO) therapy." Mutagenesis 11(6): 605-609.
    Donato, R., G. Sorci, F. Riuzzi, C. Arcuri, R. Bianchi, F. Brozzi, C.
    Tubaro and I. Giambanco (2009). "S100B's double life: intracellular regulator and extracellular signal." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1793(6): 1008-1022.
    Dueñas, A. M., R. Goold and P. Giunti (2006). "Molecular pathogenesis
    of spinocerebellar ataxias." Brain 129(6): 1357-1370.
    Edwards, M. and J. S. Cooper (2018). Hyperbaric, Thermal Burns.
    StatPearls. Treasure Island (FL), StatPearls Publishing StatPearls Publishing LLC.
    Eltorai, I., G. B. Hart and M. B. Strauss (1984). "Osteomyelitis in the
    spinal cord injured: a review and a preliminary report on the use of hyperbaric oxygen therapy." Paraplegia 22: 17.
    Espinosa, J. S. and L. Luo (2008). "Timing neurogenesis and
    differentiation: insights from quantitative clonal analyses of cerebellar granule cells." J. Neurosci. 28(10): 2301-2312.
    Fan, H.-C., L.-I. Ho, C.-S. Chi, S.-J. Chen, G.-S. Peng, T.-M. Chan, S.-Z.
    Lin and H.-J. Harn (2014). "Polyglutamine (PolyQ) Diseases: Genetics to Treatments." Cell Transplant. 23(4-5): 441-458.
    Giordano, I., M. Bogdanow, H. Jacobi, K. Jahn, M. Minnerop, L.
    Schoels, M. Synofzik, J. Teufel and T. Klockgether (2013). "Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia." J. Neurol. 260(8): 2175-2176.
    Guo, X., M.-H. Disatnik, M. Monbureau, M. Shamloo, D. Mochly-Rosen
    and X. Qi (2013). "Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration." The Journal of clinical investigation 123(12): 5371-5388.
    Hadanny, A., E. Lang, L. Copel, O. Meir, Y. Bechor, G. Fishlev, J.
    Bergan, M. Friedman, A. Zisman and S. Efrati (2018). "Hyperbaric oxygen can induce angiogenesis and recover erectile function." Int. J. Impot. Res.
    Harch, P. G., S. R. Andrews, E. F. Fogarty, D. Amen, J. C. Pezzullo, J.
    Lucarini, C. Aubrey, D. V. Taylor, P. K. Staab and K. W. Van Meter "Home the science News Phase 1 Study of Low-Pressure HBOT for Blast-Induced TBI, PCS and PTSD."
    Heng, M. C., J. Harker, G. Csathy, C. Marshall, J. Brazier, S.
    Sumampong and E. Paterno Gomez (2000). "Angiogenesis in necrotic ulcers treated with hyperbaric oxygen." Ostomy Wound Manage. 46(9): 18-28, 30-12.
    Hibi, A., K. Kamiya, T. Kasugai, K. Kamiya, S. Kominato, C. Ito, T.
    Miura and K. Koyama (2017). "Acute kidney injury caused by decompression illness successfully treated with hyperbaric oxygen therapy and temporary dialysis." CEN Case Rep 6(2): 200-205.
    Huang, Y., H. Ko, Z. H. Cheung, K. K. L. Yung, T. Yao, J.-J. Wang, A.
    Morozov, Y. Ke, N. Y. Ip and W.-H. Yung (2012). "Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons." Exp. Neurol. 233(2): 791-798.
    Imai, Y. and S. Kohsaka (2002). "Intracellular signaling in M-CSF-
    induced microglia activation: Role of Iba1." Glia 40(2): 164-174.
    Ince, B., A. Arslan, M. Dadaci, P. Oltulu and F. Bilgen (2016). "The
    effect of different application timings of hyperbaric oxygen treatment on nerve regeneration in rats." Microsurgery 36(7): 586-592.
    Ingelsson, M., H. Fukumoto, K. L. Newell, J. H. Growdon, E. T. Hedley–
    Whyte, M. P. Frosch, M. S. Albert, B. T. Hyman and M. C. Irizarry (2004). "Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain." Neurology 62(6): 925.
    Ingram, M. A., H. T. Orr and H. B. Clark (2012). "Genetically engineered
    mouse models of the trinucleotide-repeat spinocerebellar ataxias." Brain Res. Bull. 88(1): 33-42.
    Iwasaki, Y., T. Shiojima and M. Kinoshita (1997). "S100β prevents the
    death of motor neurons in newborn rats after sciatic nerve section." J. Neurol. Sci. 151(1): 7-12.
    Kadoyama, K., H. Funakoshi, W. Ohya and T. Nakamura (2007).
    "Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS." Neurosci. Res. 59(4): 446-456.
    Kaminska, B., A. Gozdz, M. Zawadzka, A. Ellert-Miklaszewska and M.
    Lipko (2009). "MAPK Signal Transduction Underlying Brain Inflammation and Gliosis as Therapeutic Target." The Anatomical Record 292(12): 1902-1913.
    Kao, H.-K., T.-C. Lien, Y. R. Kou and J.-H. Wang (2009). "Assessment
    of myocardial injury in the emergency department independently predicts the short-term poor outcome in patients with severe carbon monoxide poisoning receiving mechanical ventilation and hyperbaric oxygen therapy." Pulm. Pharmacol. Ther. 22(6): 473-477.
    Körpınar, Ş. and H. Uzun (2019). "The Effects of Hyperbaric Oxygen at
    Different Pressures on Oxidative Stress and Antioxidant Status in Rats." Medicina 55(5): 205.
    Lee, C.-C., S.-C. Chen, S.-C. Tsai, B.-W. Wang, Y.-C. Liu, H.-M. Lee
    and K.-G. Shyu (2006). "Hyperbaric oxygen induces VEGF expression through ERK, JNK and c-Jun/AP-1 activation in human umbilical vein endothelial cells." J. Biomed. Sci. 13(1): 143-156.
    Lee, Y. S., C. C. Chio, C. P. Chang, L. C. Wang, P. M. Chiang, K. C. Niu
    and K. J. Tsai (2013). "Long course hyperbaric oxygen stimulates neurogenesis and attenuates inflammation after ischemic stroke." Mediators Inflamm. 2013: 512978.
    Li, Q., M. Guo, X. Xu, X. Xiao, W. Xu, X. Sun, H. Tao and R. Li (2008).
    "Rapid decrease of GAD 67 content before the convulsion induced by hyperbaric oxygen exposure." Neurochem. Res. 33(1): 185-193.
    Lin, K.-C., K.-C. Niu, K.-J. Tsai, J.-R. Kuo, L.-C. Wang, C.-C. Chio and
    C.-P. Chang (2012). "Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury." Journal of Trauma and Acute Care Surgery 72(3): 650-659.
    Lin, M. T. and M. F. Beal (2006). "Mitochondrial dysfunction and
    oxidative stress in neurodegenerative diseases." Nature 443: 787.
    Lin, S.-S., S. W.N. Ueng, C.-C. Niu, Y.-K. Tu, C.-Y. Yang, W.-J. Chen,
    M. Lee and J.-K. Chen (2013). Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/β-catenin signaling—An in vitro and in vivo study.
    Liu, L., C.-j. Li, Y. Lu, X.-g. Zong, C. Luo, J. Sun and L.-j. Guo (2015).
    "Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion." Sci. Rep. 5: 14474.
    Ma, H., Rachel D. Groth, Samuel M. Cohen, John F. Emery, B. Li, E.
    Hoedt, G. Zhang, Thomas A. Neubert and Richard W. Tsien (2014). "γCaMKII Shuttles Ca2+/CaM to the Nucleus to Trigger CREB Phosphorylation and Gene Expression." Cell 159(2): 281-294.
    Maltecca, F., A. Filla, I. Castaldo, G. Coppola, N. Fragassi, M. Carella,
    A. Bruni, S. Cocozza, G. Casari and A. Servadio (2003). "Intergenerational instability and marked anticipation in SCA-17." Neurology 61(10): 1441-1443.
    Manto, M. U. (2005). "The wide spectrum of spinocerebellar ataxias
    (SCAs)." Cerebellum (London, England) 4(1): 2-6.
    Mason, C. A., S. Christakos and S. M. Catalano (1990). "Early climbing
    fiber interactions with Purkinje cells in the postnatal mouse cerebellum." J. Comp. Neurol. 297(1): 77-90.
    Nagatomo, F., A. Takemura, R. R. Roy, H. Fujino, H. Kondo and A.
    Ishihara (2018). "Mild hyperbaric oxygen inhibits the growth-related decline in skeletal muscle oxidative capacity and prevents hyperglycemia in rats with type 2 diabetes mellitus." J. Diabetes 10(9): 753-763.
    Nakamura, K., S.-Y. Jeong, T. Uchihara, M. Anno, K. Nagashima, T.
    Nagashima, S.-i. Ikeda, S. Tsuji and I. Kanazawa (2001). "SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein." Hum. Mol. Genet. 10(14): 1441-1448.
    Nylander, G., D. Lewis, H. Nordström and J. Larsson (1985). "Reduction
    of postischemic edema with hyperbaric oxygen." Plast. Reconstr. Surg. 76(4): 596-603.
    Ohsawa, K., Y. Imai, Y. Sasaki and S. Kohsaka (2004).
    "Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity." J. Neurochem. 88(4): 844-856.
    Oyaizu, T., M. Enomoto, N. Yamamoto, K. Tsuji, M. Horie, T. Muneta, I.
    Sekiya, A. Okawa and K. Yagishita (2018). "Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation." Sci. Rep. 8(1): 1288.
    Pan, X., C. Chen, J. Huang, H. Wei and Q. Fan (2015). "Neuroprotective
    effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson's disease in rats." Neurosci. Lett. 600: 220-225.
    Periyasamy-Thandavan, S., M. Jiang, P. Schoenlein and Z. Dong (2009).
    "Autophagy: molecular machinery, regulation, and implications for renal pathophysiology." American Journal of Physiology-Renal Physiology 297(2): F244-F256.
    Perrone, L. and M. A. Melone (2008). "New targets for therapy in
    polyglutamine (polyQ) expansion diseases." Curr. Drug Ther. 3(3): 177-189.
    Ren, H., W. Wang, Z. Ge and J. Zhang (2001). "Clinical, brain electric
    earth map, endothelin and transcranial ultrasonic Doppler findings after hyperbaric oxygen treatment for severe brain injury." Chin. Med. J. 114(4): 387-390.
    Renkawek, K., G. J. J. Stege and G. J. C. G. M. Bosman (1999).
    "Dementia, gliosis and expression of the small heat shock proteins hsp27 and αB-crystallin in Parkinson's disease." Neuroreport 10(11): 2273-2276.
    Rockswold, S. B., G. L. Rockswold and A. Defillo (2007). "Hyperbaric
    oxygen in traumatic brain injury." Neurol. Res. 29(2): 162-172.
    Rolfs, A., A. H. Koeppen, I. Bauer, P. Bauer, S. Buhlmann, H. Topka, L.
    Schöls and O. Riess (2003). "Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17)." Ann. Neurol. 54(3): 367-375.
    Shacka, J. J., K. A. Roth and J. Zhang (2008). "The autophagy-lysosomal
    degradation pathway: role in neurodegenerative disease and therapy." Front. Biosci. 13: 718-736.
    Shams, Z., A. R. khalatbary, H. Ahmadvand, Z. Zare and K. Kian (2017).
    "Neuroprotective effects of hyperbaric oxygen (HBO) therapy on neuronal death induced by sciatic nerve transection in rat." BMC Neurol. 17: 220.
    Sokoloff, G., A. M. Plumeau, D. Mukherjee and M. S. Blumberg (2015).
    "Twitch-related and rhythmic activation of the developing cerebellar cortex." J. Neurophysiol. 114(3): 1746-1756.
    Staples, J. R., D. B. Clement, J. E. Taunton and D. C. McKenzie (1999).
    "Effects of Hyperbaric Oxygen on a Human Model of Injury." The American Journal of Sports Medicine 27(5): 600-605.
    Strauss, M. B. (2012). "The effect of hyperbaric oxygen in crush injuries
    and skeletal muscle-compartment syndromes." Undersea Hyperb. Med. 39(4): 847-855.
    Switonski, P. M., W. J. Szlachcic, A. Gabka, W. J. Krzyzosiak and M.
    Figiel (2012). "Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II." Mol. Neurobiol. 46(2): 430-466.
    Tian, X., J. Wang, J. Dai, L. Yang, L. Zhang, S. Shen and P. Huang
    (2012). "Hyperbaric oxygen and Ginkgo Biloba extract inhibit Abeta25-35-induced toxicity and oxidative stress in vivo: a potential role in Alzheimer's disease." Int. J. Neurosci. 122(10): 563-569.
    Wang, H., J. Xu, P. Lazarovici, R. Quirion and W. Zheng (2018). "cAMP
    Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia." Front. Mol. Neurosci. 11(255).
    Wang, Q., L. Liu, L. Pei, W. Ju, G. Ahmadian, J. Lu, Y. Wang, F. Liu
    and Y. T. Wang (2003). "Control of Synaptic Strength, a Novel Function of Akt." Neuron 38(6): 915-928.
    Xianyong, M., D. Dun and C. Weidong (2017). "Inhibitors and Activators
    of SOD, GSH‐Px, and CAT."
    Yamada, K. and M. Watanabe (2002). "Cytodifferentiation of Bergmann
    glia and its relationship with Purkinje cells." Anatomical Science International 77(2): 94-108.
    Zhang, J., W. Gu, Y. Hao and Y. Chen (2013). "Spinocerebellar ataxia
    17: Inconsistency between phenotype and neuroimage findings." Annals of Indian Academy of Neurology 16(4): 703-704.

    下載圖示
    QR CODE