簡易檢索 / 詳目顯示

研究生: 林暐智
Wei-Chih Lin
論文名稱: 阿達瑪轉換法在液相層析/拉曼光譜法之應用
Applications of Hadamard Transform-Liquid Chromatography based on Raman spectrometry
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 阿達瑪轉換拉曼光譜法液相層析法
英文關鍵詞: Hadamard Transform, Raman spectrometry, Liquid Chromatography
論文種類: 學術論文
相關次數: 點閱:300下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首次將阿達碼轉換(Hadamard transform)技術應用在液相層析/拉曼光譜法(liquid chromatography/Raman spectrometry, LC/RS)上。分析物溶液置於精密注射針內,配合注射泵(syringe pump)推擠進樣,在三向連接頭(Tee connector)中,與來自液相層析泵的流析溶劑匯流以後,共同經過層析分離管柱。經分離之分析物的拉曼訊號則由市售拉曼光譜儀(Renishaw Invia Raman spectroscope)收集。配合阿達瑪序碼(Hadamard code)的使用,由電腦可以控制注射泵的進樣順序,因此可以得到阿達碼-層析圖碼。此編碼之層析圖經過阿達碼轉換以後,可還原得到解碼之液相層析/拉曼光譜圖。實驗結果發現,此方法非常有助於提高雜訊比值,亦有助於提高偵測靈敏度。當以結晶紫(crystal violet, CV)作為測試樣品,編碼後的層析圖譜經由阿達瑪轉換後,訊號/雜訊比提高了7.29倍。這數值與理論值8.02 相當接近。再者,本研究同時發現,經過層析分離管柱後的分析物若能與奈米銀溶液再次匯流混合的話,藉由表面增強拉曼光現象,可提升拉曼散射光的強度,使分析物的的偵測極限下降。即使分析物的濃度為 500 ppb,依舊可觀察到清楚的拉曼光譜圖。

    The technique of Hadamard transform (HT) was successfully coupled with liquid chromatography/Raman spectrometry (LC/RS), for the first time. Crystal violet (CV) and a commercial Raman system (Renishaw Invia Raman Spectroscope) were employed as a model sample and detection instrument, respectively. Sample injection device was aslo developed to achieve multiple sample injections for the use of Hadamard
    transformation. The sample solution was placed in a reservoir and was pushed out by a commercial syringe pump, which was controlled by a personal computer. Compared with a conventional single injection method in LC, the S/N ratios were substantially improved after inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when Hadamard matrix of 255 was used, the S/N
    ratio of the signals for crystal violet (concentration level, 0.5 ppm) was substantially improved to 7.29-fold, and the improvements are in good agreement with those obtained by theory (8.0-fold). The limit of detect was further improved when the method of surface enhanced Raman
    scattering (SERS) was applied.

    中文摘要…………………………………………………………………………… I 英文摘要……………………………………………………………………………II 目錄……………………………………………………………………………… III 圖目錄……………………………………………………………………………… V 表目錄…………………………………………………………………………… VII 第一章 緒論…………………………………………………………………………1 1-1 研究目的………………………………………………………………………1 1-2 分析物簡介……………………………………………………………………2 結晶紫(Cryatal violet)………………………………………………………2 1-3 阿達瑪轉換法...…………………………………………………………… 3 第二章 分析方法及原理……………………………………………………………4 2-1 拉曼散射………………………………………………………………………4 2-1-1 拉曼散射歷史簡介…………………………………………………………4 2-1-2 拉曼散射原理介紹…………………………………………………………6 2-2 表面增強拉曼……………………………………………………………… 10 2-2-1 表面增強拉曼歷史簡介………………………………………………… 10 2-2-2 表面增強拉曼原理介紹………………………………………………… 11 2-3 奈米粒子的特性…………………………………………………………… 15 2-4 高效能液相層析法簡介…………………………………………………… 17 2-5 阿達瑪矩陣原理…………………………………………………………… 19 2-5-1 矩陣起源………………………………………………………………… 20 2-5-2 阿達瑪轉換法…………………………………………………………… 21 2-5-3 阿達瑪轉換提高S/N 比的理論值………………………………………28 第三章 儀器、藥品與實驗方法………………………………………………… 32 3-1 高解析拉曼光譜分析儀…………………………………………………… 32 3-2 阿達瑪進樣裝置…………………………………………………………… 35 3-2-1 阿達瑪進樣裝置………………………………………………………… 35 3-2-2 阿達瑪進樣步驟與實驗方法…………………………………………… 38 3-2-3 液相層析/拉曼光譜分析儀………………………………………………40 3-3 奈米銀膠體溶液的配置與玻璃容器清洗………………………………… 42 3-3-1 奈米銀膠體溶液的配置………………………………………………… 42 3-3-2 玻璃容器清洗…………………………………………………………… 43 3-4 儀器及周邊設備列表……………………………………………………… 44 3-5 實驗藥品列表……………………………………………………………… 49 第四章 研究過程與結果討論…………………………………………………… 50 4-1 注射式幫浦進樣器穩定度測試…………………………………………… 50 4-1-1 以UV-Vis 偵測器測試注射式幫浦進樣器穩定度 ……………………50 4-2 利用液相層析/拉曼光譜分析法對分析物進行分析………………………53 4-2-1 液相層析/拉曼光譜法對不同進樣體積測試……………………………54 4-2-2 液相層析/拉曼光譜法對不同進樣濃度測試……………………………59 4-2-3 阿達瑪進樣與阿達瑪序列比較………………………………………… 64 4-2-4 阿達瑪轉換與單點進樣結果比較……………………………………… 66 4-3 利用液相層析/表面增強拉曼法對分析物進行偵測………………………68 4-3-1 奈米銀溶液製配結果.……………………………………………………69 4-3-2 液相層析/表面增強拉曼法對不同進樣濃度測試………………………72 4-3-3 LC-SERS 之阿達瑪轉換與單點進樣結果比較…………………………79 第五章 結論……………………………………………………………………… 81 參考文獻……………………………………………………………………………82 附錄一………………………………………………………………………………88 附錄二…………………………………………………………………………… 103

    [1] Lao, W. J.; Xu, C. Z.; Ji, S. F.; You, J. M.; Ou,Q. Y.
    Spectrochimica Acta Part A 2000, 56, 2049-2060.
    [2] Nafie, Laurence A. Annu. Rev. Phys. Chem. 1997, 48, 357-386.
    [3] R Baenal, Josefa.; Lendl, Bernhard. Current Opinion in Chemical Biology. 2004, 8, 534-539.
    [4] Schrader, Bernhard. Angew. Chem. Internat .Edit. 1973, 12, 884-908.
    [5] Wharton, Christopher W. Biochem. J. 1986, 233, 25-36.
    [6] Richard L. McCreey. Raman Spectroscopy for chemical analysis, New York; Wiley Interscience. 2000.
    [7] Brandt, E. S.; Cotton, T. M. Surface-Enhanced Raman Scattering, 2nd ed.; Rossiter, B. W., Baetzold, R. C., Eds.; John Wiley & Sons: New York, 1993; Vol. Ixb, 633-718.
    [8] Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27,
    241-250.
    [9] Chang, R. K.; Furtak. T. E. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982,53, 39-46.
    [10] He, L., Natan, M. J., Keating, C. D. Anal. Chem. 2000, 72, 5348-5355.
    [11] Dijkstra, R. J.; Gerssen, A.; Efremov, E. V.; Ariese, F., Brinkman, U. A. T.; Gooijer, C. Anal. Chim. Acta. 2004, 508, 127-134.
    [12] Seifar, R. M.; Dijkstra, R. J.; Gerssen, A.; Ariese, F.; Brinkman, U. A. T.; Gooijer, C. J. Sep. Sci. 2002, 25, 814-818.
    [13] Nirode, W. F.; Devault, G. L., Sepaniak, M. J. Anal. Chem. 2000, 72, 1866-1871.
    [14] Lueck, H. B.; Daniel, D. c.; McHale, J. L. J. Raman Spectrosc. 1993, 24, 363-370.
    [15] Liang, E. J.; Ye, X. L.; Kiefer, W. J. Phys. Chem. A 1997, 101, 7330-7335.
    [16] Marshall, A. G.; Verdun, F. R. Fourier Transforms in NMR, Optical, and Mass Spectrometry. New York:Elsevier,1990.
    [17] Marshall, A. G. Fourier, Hadamard, and Hilbert Transforms in Chemistry. New York: Plenum Press,1982.
    [18] Griffiths, P. R. Science. 1983, 222, 297.
    [19] Perkins, W. D. J. Chem. Educ. 1986, 63, A5, A296
    [20] Glasser, L. J. Chem. Educ. 1987, 64, A228, A260, A306.
    [21] Griffiths, P. R. Ed. Transform Techniques. New York: Pleunum Press,1978.
    [22] Treado, P. J.; Morris, M. D. Anal. Chem. 1989, 61, 723A.
    [23] Harwit, M. O.; Sloane, N. J. A. HADAMARD TRANSFORM
    OPTICS. New York: Academic Press,1979.
    [24] Kaljurand, M.; Küllok, E. Chromatographia, 1978, 11, 328-330.
    [25] Brayan, J. G.; Malcolme-Lawes, D. J.; Mew, C. D.; Xie, S. J. Autom. Chem. 1995, 17, 77-82.
    [26] Kaneta, T.; Yamaguchi, Y.; Imasaka, T. Anal. Chem. 1999, 71, 5444-5446.
    [27] Kaneta, T.; Kosai, K.; Imasaka, T. Anal. Chem. 2002, 74,2257-2260.
    [28] Hata, K.; Kichise, Y.; Kanata, T.; Imasaka, T. Anal. Chem. 2003, 75,1765-1768.
    [29] Hata, K.; Kaneta, T.; Imasaka, T. Anal. Chem. 2004,
    76,4421-4425.
    [30] Hata, K.; Kaneta, T.; Imasaka, T. Electrophoresis
    2007,28,328-334.
    [31] DeVerse, R. A.; Hammaker, R. M.; Fateley, W. G. Viob. Spectro. 1999, 19,177-186.
    [32] Fateley, W. G.; Hammaker, R. M.; Paukstelis, J. V. Applied. Specto. 1993, 47, 1464-1470.
    [33] Ashida, J.; Kupce, E.; Amoureux, J. P. J. Magne. Resonan. 2006, 178,129-135.
    [34] Lescop, E.; Rasia, R.; Brutscher, B. J. Am. Soc. 2008, 130, 5014.
    [35] Burnley, B. T.; Kalverda, A. P.; Paisey, S. J. J. Bio. NMR. 2007, 39, 239-245.
    [36] Szumlas, A.W.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2006, 78, 4474-4481.
    [37] Clowers, B. H.; Belov, M. E.; Prior, D. C.; William, F. D.; Ibrahim, D.; Smith, R. D. Anal. Chem. 2008, 80, 2464-2473.
    [38] Clowers, B. H.; Siems,W. F.; Hill H. H.; Massick, S. M. Anal. Chem. 2006, 78, 44-51.
    [39] Richard L. McCreery. Raman Spectroscopy for chemical analysis, New York: Wiley Interscience. 2000.
    [40] Nie, Shuming; R. Emony, Steven Science 1997, 275.
    [41] Kneipp, Katrin; Wang, Y.; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving, R. Dasari, R. Dasari, Ramachandra; S. Feld, Michael Phys. Rev. Letters. 1997, 78, 9.
    [42] Maruyama, Yoshihiro; Ishikawa, Mitauru; Futamata, Masayuki Anal. Sci. 2001, 17.
    [43] Dou, X.; Yamaguchi, Y.; Yammamoto, H.; Doi, S.; Ozaki, Y. Vibrational Spectroscopy 1996, 13, 83-89.
    [44] W. McMurdy III; J.Berger, Andrew Appl. Spectrosc. 2003, 57, 5.
    [45] Janina K.; Harald K,; Margaret M.; Dennis B.; Katrin K. Nano Lett., 2006, 6, 10.
    [46] Kartin Kneipp e , Surface-enhanced Raman scattering and
    biophysics, J. Phys: Condens. Matter. 2002,14 , 597-264 .
    [47] High Resolution UV Echelle Spectroscopy for Environmental Sensing, Proc. SPIE, 2002, 5269, 34-41
    [48] Surface-Enhanced Raman for Monitoring Toxins in Water, Proc. SPIE, 2004, 5268, 340-348.
    [49] Janina K.; Harald K.; Burghardt W.; Katrin K. Nano Lett., 2007, 7, 9.
    [50] Vo-Dinh, T. Trends in Analytical Chemical 1998, 17, 557.
    [51] Anthony, T. Tu. Raman Spectroscopy in Biology Principles and Applicarions John Wiley & Sons, Inc.
    [52] 李冠卿,物理雙週刊,1983,第五卷,第四期,185.
    [53] Nie, S. M.; Emory, S. R. Science 1997, 275, 1102.
    [54] He, L.; Natan, M. J.; Keating, C. D. Anal. Chem. 2000, 72,5348-5355.
    [55] Nirode, W. F.; Devault, G. L., Sepaniak, M. J. Anal. Chem. 2000, 72, 1866-1871.
    [56] Kneipp, Kartrin Single Mol. 2001, 4, 291-292.
    [57] Futamata, M.; Maruyama, Y.; Ishikawa, M. Vibrational
    Spectroscopy 2004, 35, 121-129.
    [58] Otto, Andreas J. Raman Spectrosc. 2005, 36, 497-509.
    [59] Turkevich, J.; Kim, G. ”Palladium: Preparation and Catalytic Properties of Particles of Uniform Size”, Science, 1970,169 ,873.
    [60] Rao, C. N. R.; Kulkarni, G. U., P.; Thomas, J.; Edward, P. P. Chem. Eur. J. 2002, 8, 29.
    [61] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
    [62] Creighton J. A.; Blatchford C. G.; Albight M. G. J. Chem. Soc., Faraday Trans. 1979, 79, 790.
    [63] Wang C. Y.; Liu C. Y.; Zhen X.; Shen T. Colloids Surf. A 1998; 131, 271.
    [64] Henglein A. J. Phys. Chem. 1993, 97, 5457.
    [65] Smith W. E. Methods Enzymol. 1993, 226,482.
    [66] Laserna J. J. Anal Chim. Acta 1993, 283, 607.
    [67] Skoog, A.; Holler, F.; Nieman, A. Principles of Instrumental Analysis, fifth ed. BROOKS/COLE 1997.
    [68] Sylvester, J. J. Philosophical Magazine. 1867, 34, 461.
    [69] Hadamard, J. Bulletin des Sciences Mathemaiques. 1893, 17, 240.
    [70] Gottlieb, P. IEEE Trans. Info. Theory, 1968, 14, 428.
    [71] Harwit, M. D.; Sloane, N. J. “Hadamard Transform Optics”Academic Press: London, 1979.
    [72] Griffiths, P. R., ed. “Transform Techniques in Chemistry. Modern Analytical Chemistry Series” Plenum Press: New York, 1978.
    [73] Literature Seminar, Pan, C. “Applications of The Hadamard Transform in Analytical Chemistry” 2007, 3.
    [74] Yates, F. J. Roy. Stat. Soc. Supp. 1935, 2, 181.
    [75] Fellgett, P. J. de Physique et le Radium. 1958, 19, 187.
    [76] Hotelling, H. Ann. Math. Stat. 1944, 15, 297.
    [77] Zupan, J.; Bohanec, S.; Razinger, M.; Novic, M. Analytical Chimica Acta. 1988, 210, 63.
    [78] Smit, H. C. Chromatographia 1970, 3, 515.
    [79] Brock, A.; Rodriguez, N.; Zare, R. N. Anal. Chem. 1998, 70, 3735.
    [80] Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Feranadez, F. M.; Zare, R. N. Angew. Chem. Int. Ed. 2004, 43, 6541-6544.

    下載圖示
    QR CODE