簡易檢索 / 詳目顯示

研究生: 吳弦儒
Wu, Hsuan-Ju
論文名稱: 非共平面角度-偏振多工及同調篩選合成孔徑數位全像顯微術之研究
Studies on Non-coplanar Angular-polarization Multiplexing and Coherence Gating in Synthetic Aperture Digital Holographic Microscopy
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 數位全像顯微術合成孔徑解析度螺旋相襯顯微術共光程非共平面角度偏振同調篩選
英文關鍵詞: non-coplanar, angular-polarization, coherence gating
DOI URL: https://doi.org/10.6345/NTNU202201968
論文種類: 學術論文
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討合成孔徑在數位全像顯微術中,以共光程技術來簡化光學實驗架構,提升系統穩定度與相位精準度;最後架構出一套非共平面合成孔徑數位全像系統。研究中以穿透式數位全像顯微術為基礎,利用合成孔徑技術提升系統空間解析度,透過改善系統掃描時的失焦問題,完成最佳化解析度之系統設計。在最佳化解析度的實驗架構下我們成功地以可見光波段雷射光源量測出線寬約200 nm的線對物體,並達到相位精準度約3.8 nm,並也用此系統來量測活體細胞。另外非共平面合成孔徑數位全像系統架構中,我們透過設計偏振與同調,並搭配使用空間光調制器,而得以在單次曝光條件下記錄合成孔徑數位全像片。接著由合成孔徑頻譜疊加的方法即可得出物體提升振幅影像橫向解析度的資訊,在此架構下於物體光與參考光端我們皆使用空間光調制器分出所需掃描的光束,避免了傳統機械掃描時的振動,如此即有效地增加系統穩定度且簡化了光學實驗拍攝次數。最終非共平面數位全像顯微術與合成孔徑技術結合後,以波長為405 nm雷射為實驗光源與單次拍攝的條件下,系統橫向解析度增加為原本的1.5倍。若以拍攝6張做空間平均抑制雜訊,系統橫向解析度增加至原本的1.72倍。

    This works mainly discusses how to optimize the system resolution in the digital holographic microscopy (DHM). We also try to enhance the system stability and simplify the experimental architecture by applying common-path setup. Finally, we set of non-coplanar angular-polarization multiplexing and coherence gating in synthetic aperture digital holographic microscopy system. This research bases on transmission type DHM. This work presents a common-path synthetic aperture digital holographic microscopy using spiral phase plate to improve phase stability and spatial resolution. The influence of lateral shift and defocus in spiral phase plane were analyzed at different illumination angles. In the experiments, the SA technique gives better image resolution up to about 200 nm with phase accuracy about 3.8 nm by using visible light source. In addition, we produce a non-coplanar angular-polarization multiplexing and coherence gating in synthetic aperture digital holographic microscopy system. We designed polarized and coherence gating, and with the use of spatial light modulator (SLM). We were able to record synthetic aperture digital images in single exposure conditions. In the experiments, the non-coplanar angular-polarization multiplexing and coherence gating in SA-DHM technique gives better image resolution up to about 1.5 times. If we record six hologram to do the space average. The system image resolution increased to 1.72 times.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1合成孔徑數位全像技術背景 1 1.2研究動機 3 1.3文獻回顧與分析 4 1.3.1相位影像及其相襯成像技術 4 1.3.2 Angular-multiplexing技術 5 1.4論文架構 8 第二章 光螺旋數位全像超解析顯微技術 9 2.1共光程數位全像顯微術簡介 9 2.1.1邊緣強化與相位對比度強化 10 2.1.2定量分析 12 2.2合成孔徑光螺旋共光程數位全像顯微術之工作原理 15 2.3電腦模擬結果 18 2.3.1數位全像記錄與重建 18 2.3.2數位全像顯微特性分析與改善 19 2.4實驗與討論 23 2.5結果與分析 29 第三章 非共平面合成孔徑超解析成像 31 3.1頻譜堆疊原理分析 31 3.2干涉對比度理論分析 34 3.2.1偏振設計 34 3.2.2雷射同調長度 37 3.3電腦模擬 38 3.3.1 頻譜分析 38 3.3.2偏振與同調長度設計 40 3.3.3光學實現設計 43 第四章 非共平面角度-偏振多工及同調篩選 合成孔徑數位全像顯微技術 45 4.1系統設計 45 4.2實驗與討論 49 4.3結果與分析 52 第五章 結論與未來展望 56 參考文獻 57 附件A 發表論文 59 附件B 合成孔徑光螺旋共光程數位全像顯微術流程圖 62

    [1] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
    [2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [3] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
    [4] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [5] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms” Appl. Opt. 38, 6994-7001 (1999).
    [6] C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002)
    [7] M. Kim, Y. Choi, C. F. Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148-150 (2011).
    [8] Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263-4265 (2011).
    [9] M. Kim, Y. Choi, C. F. Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
    [10] A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
    [11] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [12] S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy” Opt. Express 14, 3792–3805 (2006).
    [13] C. Maurer, S. Bernet, and M. Ritsch-Marte, “Refining common path interferometry with a spiral phase Fourier filter,” J. Opt. A: Pure Appl. Opt. 11, 094023 (2009).
    [14] C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
    [15] C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holographyfor aperture synthesis,” Opt. Lett. 20, 2356-2358 (2008).
    [16] U. Schnars and W. P. O. Jüptner, Digital Holography, Springer US, New York, (2005).
    [17] N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [18] Goodman J.W. Statistical Optics, Wiley, (2000).
    [19] A. Hussain, J. L. Martínez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator,” Opt. Express 21, 9615-9623 (2013).
    [20] R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nature Photonics 10, 68–71 (2016).

    無法下載圖示 本全文未授權公開
    QR CODE