簡易檢索 / 詳目顯示

研究生: 莊桓嘉
Chuang Huan-Chia
論文名稱: 氧化鈥鋅/氧化鋅雙層膜結構之物性研究
Study of physical properties of zinc holmium oxide / zinc oxide bilayer structures
指導教授: 駱芳鈺
Lo, Fang-Yuh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 42
中文關鍵詞: 脈衝雷射蒸鍍法稀磁性半導體順磁性
英文關鍵詞: pulsed-laser deposition, diluted magnetic semiconductor, Ho, paramagnetism
論文種類: 學術論文
相關次數: 點閱:141下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以脈衝雷射蒸鍍法於c平面藍寶石基板上先沉積一層氧化鋅緩衝層,再鍍上一層氧化鈥鋅薄膜,探討緩衝層在不同溫度、厚度下對氧化鈥鋅薄膜的影響。
    以X光繞射檢測結果顯示我們的氧化鈥鋅薄膜為c軸取向,沒有發現任何其他結晶相。且在參雜高濃度鈥元素時引入氧化鋅緩衝層有助於氧化鈥鋅薄膜品質的提升。以PL檢測結果主要的缺陷發光有鋅空缺和鋅間隙,且隨著樣品檢測溫度的降低薄膜發光有增強的趨勢。SQUID檢測結果顯示氧化鈥鋅薄膜在室溫和T=5K時皆為順磁性。

    Pulsed-laser deposition (PLD) was applied to grow holmium-doped ZnO(Ho:ZnO) thin films on c-sapphire substrate with different holmium(Ho) concentrations and with ZnO buffer layer. The nominal doping density of Ho ranges from 3%-15%. The physical properties of Ho:ZnO thin films were investigated by x-ray diffraction (XRD), photoluminescence(PL), and superconducting quantum interference device (SQUID). The XRD patterns show that there is no secondary phase.
    Photoluminesence spectroscopy showed the major defects are zinc vacancy and interstitial zinc. The m-H curves show paramagnetism of the thin films.

    目錄 Chapter 1緒論 1 Chapter 2 材料特性與實驗原理 3 2.1氧化鋅(ZnO)、鈥(Ho)與藍寶石基板(sapphire)性質 3 2.2 X光繞射(X-Ray Diffraction) 6 X光原理 6 布拉格定律 7 2.3光致螢光(Photoluminescence, PL) 8 發光原理 8 氧化鋅的缺陷發光 9 2.4 磁特性與磁交互作用 10 磁性起源 10 2.5超導量子干涉儀(Superconducting Quantum Interference Device , SQUID) 13 Chapter 3 薄膜製成方法和過程 14 3.1薄膜製成簡介 14 3.2脈衝雷射蒸鍍法(Pulsed Laser Deposition, PLD) 14 PLD的優點 14 PLD的缺點 15 PLD的機制 15 3.3儀器介紹 16 3.4靶材製作 17 3.5藍寶石(sapphire)基板清洗 18 3.6鍍膜步驟 19 Chapter 4 實驗結果與討論 20 4.1氧化鋅薄膜在攝氏650度的結構及光學特性 20 4.2緩衝層對氧化鈥鋅薄膜結構性質之影響 22 4.3不同緩衝層溫度的比較 26 4.4不同緩衝層厚度的比較 29 4.5 Zn1-xHoxO/ZnO/c-Sapphire(x=0,0.03,0.05,0.10,0.15)分析 31 變溫PL光譜分析 31 磁性分析 36 Chapter5 結論與未來展望 40 參考文獻 41

    [1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
    [2] H. Ohno, Science 281, 951 (1998).
    [3]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. End, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
    [4]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
    [5]H.S.KIM , S.J.PEARTON , D.P.NORTON , F.REN , Appl.Phys.A 91,255-259(2008)
    [6]G.M. Rai , M.A. lqbal , Y.Xu , L.G. Will , Wen Zhang,Chinese Journal of chemical physics, volume24,number3(2011)
    [7] Frederik Claeyssens,Colin L. Freeman, Neil L. Allan,Ye Sun,a Michael N. R. Ashfold and
    John H. Harding. J. Mater. Chem., 15, 139–148 (2005)
    [8] ZnO and Its Applications,K.Ellmer and A. Klein
    [9]簡志峰, 脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜,國立臺灣師範大學, 2011
    [10] S. T. LIM, W. D. SONG, K. L. TEO, T. LIEW and T. C. CHONG, Int. J. Mod Phys B. 23, 17 , 3550–3555(2009)
    [11] Akira Onodera and Masaki Takesada, Electronic Ferroelectricity in II-VI Semicon-ductor ZnO(Japan , Hokkaido University)
    [12] STEPHEN BLUNDELL, Magnetism in Condensed Matter(OXFORD, 2001)
    [13] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301 (2005)
    [14] Frederik Claeyssens , Colin L. Freeman , Neil L. Allan , Ye Sun , Michael N. R. Ashfold and John H. Harding, J. Mater. Chem., 15, 139-148(2005)
    [15]磁性物理學, 張喣,李學養 譯
    [16]密修誌, 脈衝雷射蒸鍍法蒸鍍製備氧化釓鋅薄膜的探討,國立臺灣師範大學, 2013
    [17]謝家民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第二十
    卷第二期
    [18] Anderson Janotti, Chris G. Van de Walle, Journal of Crystal Growth 287,58–65(2006)
    [19]楊朝偉,巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留,成功大學,2006
    [20] AFKohan GCeder and DMorgan Phy.ReV.61,150109(2000)
    [21]郭忠諭,參雜釓和鈥之氮化鎵薄膜的結構、光學及磁特性, 東華大學,2010
    [22]鄒昀晉,以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析,2009
    [23]Robert Eason, PLUSED LASER DEPOSITION OF THIN FILMS
    [24] K. H. Tam,C. K. Cheung, Y. H. Leung, A. B. Djurisˇic´, J. Phys. Chem. B , 110, 2006

    下載圖示
    QR CODE