研究生: |
謝昀儒 Hsieh, Yun-Ju |
---|---|
論文名稱: |
Topological Data Analysis with Combinatorial Laplacian for Data Clustering Topological Data Analysis with Combinatorial Laplacian for Data Clustering |
指導教授: |
樂美亨
Yueh, Mei-Heng |
口試委員: |
黃聰明
Huang, Tsung-Ming 林文偉 Lin, Wen-Wei |
口試日期: | 2021/07/05 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 42 |
英文關鍵詞: | Topological data analysis, Homology group, Laplacian matrix, Persistent homology |
研究方法: | 紮根理論法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202100727 |
論文種類: | 學術論文 |
相關次數: | 點閱:145 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis attempts to combine machine learning and topological data analysis (TDA). We exam the machine that only learned the original data without interruption to face various testing data under linear transformation by adding Betti number as an additional feature. Our experiments are based on the theory of homology group by constructing simplicial complexes of images and the discrete version of the Hodge theorem with higher-order Laplacian matrices. This approach performs well and represents the importance concerning topological structure of the image itself. We believe that TDA is a good supporter to help machine learning models dealing with more complicated data rather than pouring more and more different cases for training. In the future, we would pay more attention to the application and the theory of TDA combined with diverse models.
[1] GOLDBERG, Timothy E. Combinatorial Laplacians of simplicial complexes. Senior Thesis, Bard College, 2002.
[2] WANG, Rui; NGUYEN, Duc Duy; WEI, Guo-Wei. Persistent spectral graph. International journal for numerical methods in biomedical engineering, 2020, 36.9: e3376.
[3] GUILLEMIN, Victor; HAINE, Peter. Differential Forms. World Scientific, 2019.
[4] Polterovich, L., Rosen, D., Samvelyan, K., Zhang, J. (2020). Topological Persistence in Geometry and Analysis (Vol. 74). American Mathematical Soc..
[5] ZOMORODIAN, Afra; CARLSSON, Gunnar. Computing persistent homology. Discrete Computational Geometry, 2005, 33.2: 249-274.
[6] Lei, N., Su, K., Cui, L., Yau, S. T., Gu, X. D. (2019). A geometric view of optimal transportation and generative model. Computer Aided Geometric Design, 68, 1-21.
[7] GHRIST, Robert. Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 2008, 45.1: 61-75.
[8] Cattani, Eduardo, Fouad El Zein, and Phillip A. Griffiths. Hodge Theory (MN-49). Princeton University Press, 2014.
[9] IVANCEVIC, Vladimir G.; IVANCEVIC, Tijana T. Undergraduate lecture notes in De Rham-Hodge theory. arXiv preprint arXiv:0807.4991,2008.
[10] VON LUXBURG, Ulrike. A tutorial on spectral clustering. Statistics and computing, 2007, 17.4: 395-416.
[11] HU, Chuan-Shen; CHUNG, Yu-Min. A Sheaf and Topology Approach to Generating Local Branch Numbers in Digital Images. arXiv preprintarXiv:2011.13580, 2020.
[12] HU, Chuan-Shen. A Brief Note for Sheaf Structures on Posets. arXiv preprint arXiv:2010.09651, 2020.
[13] GALLIER, Jean; QUAINTANCE, Jocelyn. A gentle introduction to homology, cohomology, and sheaf cohomology. Preprint, 2016.
[14] Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., ... Gu, X. (2020). A geometric understanding of deep learning. Engineering, 6(3), 361-374.
[15] ARJOVSKY, Martin; CHINTALA, Soumith; BOTTOU, Léon. Wasser-stein generative adversarial networks. In: International conference on machine learning. PMLR, 2017. p. 214-223.
[16] Hu, Chuan-Shen, and Yu-Min Chung. "On the Conditions of Absorption Property for Morphological Opening and Closing." arXiv preprintarXiv:2012.13132 (2020).
[17] NG, Andrew; JORDAN, Michael; WEISS, Yair. On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 2001, 14: 849-856.
[18] LeCun, Yann and Cortes, Corinna. "MNIST handwritten digit database." (2010): .
[19] CURRY, Justin Michael. Topological data analysis and cosheaves. Japan Journal of Industrial and Applied Mathematics, 2015, 32.2: 333-371.
[20] Winters-Hilt, S., Merat, S. (2007, November). SVM clustering. In BMC bioinformatics (Vol. 8, No. 7, pp. 1-12). BioMed Central.
[21] Baas, N. A., Carlsson, G. E., Quick, G., Szymik, M., Thaule, M. (2020).Topological Data Analysis. Springer International Publishing.
[22] Bott, Raoul, and Loring W. Tu. Differential forms in algebraic topology. Vol. 82. Springer Science Business Media, 2013.
[23] ADAMS, Henry; TAUSZ, Andrew. Javaplex tutorial. Google Scholar,2011.
[24] HARTIGAN, John A.; WONG, Manchek A. AK-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1979, 28.1: 100-108.
[25] MUNCH, Elizabeth. Applications of persistent homology to time varying systems. Unpublished doctoral dissertation) Durham, NC: Duke University.[Google Scholar], 2013.
[26] Sheehy, Donald R., and Siddharth Sheth. "Sketching Persistence Diagrams." arXiv preprint arXiv:2012.01967 (2020).
[27] MACKAY, David JC; MAC KAY, David JC. Information theory, inference and learning algorithms. Cambridge university press, 2003.
[28] Greenberg, Marvin J. Algebraic topology: a first course. CRC Press,2018.
[29] Benson-Putnins, D. A. V. I. D., Bonfardin, M., Magnoni, M. E., Martin,D. (2011). Spectral clustering and visualization: a novel clustering of fisher's iris data set. SIAM Undergraduate Research Online, 4, 1-15.
[30] YU, Yan-Lin. Combinatorial Gauss-Bonnet-Chern Formula. Topology,1983, 22.2: 153-163.
[31] Cohen, G., Afshar, S., Tapson, J., Van Schaik, A. (2017, May). EMNIST: Extending MNIST to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2921-2926). IEEE.
[32] XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashionmnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
[33] ALTMAN, Naomi S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, 46.3: 175-185.