簡易檢索 / 詳目顯示

研究生: 張鳳茹
Chang, Feng-Ru
論文名稱: 不同氣候情境對長江流域暖季東移雨帶的影響與評估
The Impacts of Different Climate Change on Warm Season Eastward Propagating Rainfall Event over the Yangtze River Valley
指導教授: 黃婉如
Huang, Wan-Ru
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 降雨預報暖季綜觀尺度過程數值模擬日夜變化
DOI URL: https://doi.org/10.6345/NTNU202205157
論文種類: 學術論文
相關次數: 點閱:125下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觀測資料顯示,5月至7月在青藏高原東部產生的降雨,常有沿長江流域(29°N–34°N, 100°E–120°E) 向東邊傳播的現象。針對此現象,本論文主要探討的議題有二。其一為利用Weather Research and Forecasting (WRF) 區域模式,對2009年5月的長江流域東移雨帶進行三種不同氣候條件下的模擬,以求瞭解氣候變遷對長江流域東移雨帶可能造成的影響。其二為探討在計算資源充足的情況下,如何有效提高WRF模式模擬長江流域東移雨帶個案的能力。
    針對議題一,本論文的研究結果發現: (1) 在現今的氣候條件下(現代情境),WRF對長江流域東移雨帶的模擬結果與觀測資料相似; (2) 在加入過去氣候變異的情況下(過去情境),WRF模擬的東移雨帶個數明顯減少,東移距離明顯變短,降雨強度明顯變弱; (3) 在加入未來氣候變異的情況下(未來情境),WRF模擬的東移雨帶個數、東移距離與現代情境下的模擬結果無明顯差異,但降雨強度明顯增強。分析平均環流場的差異顯示,在過去情境下,高層西風的減弱會造成東移雨帶個數減少與東移距離變短,而水氣傳輸的減弱是造成降雨強度變弱的主因。在未來情境下,因為高層西風無明顯變化,所以東移雨帶個數與東移距離與現代情境下的模擬結果無明顯差異,而水氣傳輸的增強(減弱)會造成東移雨帶降雨強度變強(變弱)。針對議題二,本論文選用不同解析度、不同嵌套方式、不同積雲參數法及雲物理方案,對WRF模擬長江流域東移雨帶的能力進行敏感度測試。結果證明提高水平解析度最能夠顯著改善模擬長江流域東移雨帶的結果。在相同解析度的情況下,雙向嵌套優於單向嵌套。而使用不同的積雲參數法或雲物理方案,則對模擬結果無顯著影響。

    Using WRF model driven by three different climate conditions (the original, the past and the future) for May 2009 as an example, this study examines the effects of climate change on the eastward propagating rainfall events over the Yangtze River Valley. Results show that (1) under the original climate condition (i.e. Control Run), the characteristics of eastward propagating rainfall events simulated by the model are similar to the observations; (2) with the effects of past climate change (i.e. Past Run), the simulated number of propagating event is fewer; the propagating distance is shorter; and the rainfall intensity is weaker than the Control Run; (3) with the effects of future climate change (i.e. Future Run), only the rainfall intensity is stronger than the Control Run. Diagnoses on the circulation change suggest that (1) the change in upper-level westerly is responsible for the change in occurrence frequency and propagating distance of rainfall events, and (2) the change in moisture flux convergence is responsible for the change in rainfall intensity over the Yangtze River Valley. Furthermore, analyses also suggested that increasing the resolution of the model can improve model’s capability in simulating the rainfall in the Yangtze River Valley, but changing the schemes of physics processes has less impact.

    第一章 前言 1 第二章 研究方法與資料 6 (一) 實驗設計 6 1.1 議題一:不同氣候情境對雨帶的影響 6 1.2 議題二:改變解析度、嵌套方式、積雲參數化法、雲微物理方案實驗 9 1.2.1 提高解析度實驗 9 1.2.2 改變嵌套方式實驗 10 1.2.3 改變積雲參數法實驗 10 1.2.4 改變雲微物理方案實驗 11 (二) 觀測資料 11 (三) 水氣通量計算 11 (四) 東移降水個案的定義 12 第三章 氣候變遷對東移雨帶的影響 13 (一) WRF模擬長江流域東移雨帶的能力 13 (二) 氣候變遷對東移雨帶的影響 15 (三) 影響機制的探討 17 第四章 提高模式模擬能力之有效方案 19 (一) 提高解析度 19 (二) 改變嵌套方式 20 (三) 改變積雲參數法、雲微物理方案 21 第五章 總結 23 參考文獻 25 附表 33 附圖 51

    Ahijevych, D. A., C. A. Davis, R. E. Carbone, and J. D. Tuttle, 2004: Initiation of precipitation episodes relative to elevated terrain. J. Atmos. Sci., 61, 2763–2769.
    Bao, X., F. Zhang, and J. Sun, 2011: Diurnal variations of warmseason precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810.
    Betts, A. K. and M. J., Miller, 1993: The Betts-Miller scheme., Chapter in The representation of cumulus convection in numerical models of the atmosphere., Eds. K.A. Emanuel and D.J., Raymond. American Meteorological Society.
    Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 4132– 4146.
    Chen, G. T.-J., 1994: Large-scale circulations associated with the East Asian summer monsoon and the mei-yu over south China and Taiwan. J. Meteor. Soc. Japan, 72, 959–983.
    ——, 2004: Research on the phenomena of meiyu during the past quarter century: An overview. The East Asian Monsoon, C.-P. Chang, Ed., World Scientific, 357–403.
    ——, and Y.-S. Hsu, 1997: Composite structure of a low-level jet over southern China observed during the TAMEX period. J. Meteor. Soc. Japan, 75, 1003–1018.
    Chen, H., R. Yu, J. Li, W. Yuan, and T. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley? J. Climate, 23, 905–917.
    Chen, T.-C., S.-Y. Wang, W.-R. Huang, and M.-C. Yen, 2004: Variation of the East Asian summer monsoon rainfall. J. Climate, 17, 744–762.
    Chen, X. A., and Y. L. Chen, 1995: Development of low-level jets during TAMEX. Mon. Wea. Rev., 123, 1695–1719.
    Cheung, M. S., H. S. Chan, and H. W. Tong, 2015: Rainfall project for southern China in the 21st century using CMIP5 models.
    Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396.
    ——, and J. C.-L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142.
    Dudhia, J., 1989: Numerical simulation of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
    Fovell, R. G. and Y. Ogura, 1988: Numerical Simulation of a Midlatitude Squall Line in Two Dimensions. J. Atmos. Sci., 45, 3846–3879.
    Gochis, D. J., W. James Shuttleworth, and Z.-L. Yang, 2002: Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization. Mon. Wea. Rev., 130, 1282–1298.
    Grell, G.A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geoph. Res. Let., 29, NO 14., 10.1029/2002GL015311, 2002. Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199–205.
    Hawbecker, Patrick. A Comparison of 1-Way and 2-Way Nesting in the WRF-LES Framework. Diss. Texas Tech University, 2013.
    Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.
    ——, Y. Noh, and J. Dudhia, 2006:Anew vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
    Huang, H.-L., C.-C. Wang, G. T.-J. Chen, and R. E. Carbone, 2010: The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon. Wea. Rev., 138, 2975–2989.
    Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 122, 927–945.
    ____, 2000: Comments on ”Development and evaluation of a convection scheme for use in climate models”, J. Atmos. Sci., 57, p. 3686.
    Jiang, T., Kundzewicz, Z. W. and Su, B., 2008: Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int. J. Climatol., 28: 1471–1481. doi: 10.1002/joc.1635
    Johnson, R. H., 2011: Diurnal cycle of monsoon convection. The Global Monsoon System: Research and Forecast, C.-P. Chang et al., Eds., World Scientific, 257–276.
    Keenan, T. D., and R. E. Carbone, 2008: Propagation and diurnal evolution of warm season cloudiness in the Australian and maritime continent region. Mon. Wea. Rev., 136, 973–994.
    Kondowe, A.L. and O.G. Aniskina, 2014: Impacts of grid spacing and cumulus schemes on the quality of rainfall forecasts over Tanzania. The Way of Science. No. 8 (8)
    Laing, A. G., R. E. Carbone, V. Levizzani, and J. D. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93–109.
    Lau, K.-M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116, 18–37.
    LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems duringTOGACOARE. J. Atmos. Sci., 55, 3493–3518.
    Levizzani, V., F. Pinelli, M. Pasqui, S. Melani, A. G. Laing, and R. E. Carbone, 2010: A 10-year climatology of warm season cloud patterns over Europe and the Mediterranean from Meteosat IR observations. Atmos. Res., 97, 555–576.
    Lim, K.-S. S., Song-You Hong, Jin-Ho Yoon, and Jongil Han, 2014: Simulation of the Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions. Wea. Forecasting, 29, 1143–1154.
    Lin, Y., R. D. Farley, and H. D. Orville (1983), Bulk parameterization of the snowfield in a cloud model, J. Appl. Meteorol., 22, 1065 – 1092.
    Liu, C., M. W. Moncrieff, and J. D. Tuttle, 2008: A note on propagating rainfall episodes over the Bay of Bengal. Quart. J. Roy. Meteor. Soc., 134, 787–792
    Lucas M. Harris and Dale R. Durran, 2010: An Idealized Comparison of One-Way and Two-Way Grid Nesting. Mon. Wea. Rev., 138, 2174–2187.
    Marteau, R., Y., Richard, B. Pohl, C. C. Smith, and T. Castel, 2014: High-resolution rainfall variability simulated by the WRF RCM: application to eastern France. Clim. Dyn.44, 1093-1107.
    Miller, T. L. and K. C. Young, 1979: A Numerical Simulation of Ice Crystal Growth from the Vapor Phase. J. Atmos. Sci., 36, 458–469.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 663–16 682.
    Pereira, A. J., R. E. Carbone, J. E. Janowiak, P. Arkin, R. Joyce, R. Hallak, and C. G. M. Ramos, 2010: Satellite rainfall estimates over South America—Possible applicability to the water management of largewatersheds. J. Amer.Water Resour.Assoc., 46, 344–360.
    Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.
    Rozante1, J. R. and I. F. de A. Cavalcanti1, 2008: J. Geo. Res., Vol. 113, D17106
    Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.
    Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 19–36.
    Straka, J. M. and E. R. Mansell, 2005: A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories. J. Appl. Meteor., 44, 445–466.
    Sun, J., and Fuqing Zhang, 2012: Impacts of Mountain–Plains Solenoid on Diurnal Variations of Rainfalls along the Mei-Yu Front over the East China Plains. Mon. Wea. Rev., 140, 379–397.
    Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.
    Tao, W.-K., J. R. Scala, B. Ferrier, and J. Simpson, 1995: The Effect of Melting Processes on the Development of a Tropical and a Midlatitude Squall Line. J. Atmos. Sci., 52, 1934–1948.
    ____, J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An Algorithm to Estimate the Heating Budget from Vertical Hydrometeor Profiles. J. Appl. Meteor., 29, 1232–1244.
    ____ and ____, 1989: Modeling Study of a Tropical Squall-Type Convective Line. J. Atmos. Sci., 46, 177–202.
    Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental Controls on the Simulated Diurnal Cycle of Warm-Season Precipitation in the Continental United States. J. Atmos. Sci., 67, 1066–1090.
    ——, ——, ——, and M. L. Weisman, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 2437–2461.
    Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273–304.
    ——, and ——, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305–328.
    Tuttle, J. D., and R. E. Carbone, 2004: Coherent regeneration and the role of water vapor and shear in a long-lived convective episode. Mon. Wea. Rev., 132, 192–208.
    Vaidya, S. S., 2006: The performance of two convective parameterization schemes in a mesoscale model over the Indian region. Meteorology and Atmospheric Physics, Volume 92, Issue 3, 175-190
    ——, and S. S. Singh, 2000: Applying the Betts–Miller–Janjic Scheme of Convection in Prediction of the Indian Monsoon. Wea. Forecasting,15, 349–356.
    Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406–419.
    Wang, B., and I. Orlanski, 1987: Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev., 115, 1370–1393.
    Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 1606–1629.
    ——, ——, and ——, 2011a: The relationship between statistics of warm-season cloud episodes and synoptic weather regimes over the East Asian continent. Meteor. Atmos. Phys., 112, 117–124.
    ——, ——, J.-L. Li, T.-M. Leou, and G. T.-J. Chen, 2011c: An evaluation on the performance of the CWB NFS model in the prediction of warm-season rainfall distribution and propagation over the East Asian continent. Terr. Atmos. Oceanic Sci., 22, 49–69, doi:10.3319/TAO.2010.07.13.01(A).
    ——, ——, H.-L. Huang, R. E. Carbone, and S.-W. Chang, 2012: Synoptic Conditions Associated with Propagating and Nonpropagating Cloud/Rainfall Episodes during the Warm Season over the East Asian Continent. Mon. Wea. Rev., 140, 721–747.
    ——, Bo-Xun Lin, Cheng-Ta Chen, and Shih-How Lo, 2015: Quantifying the effects of long-term climate change on tropical cyclone rainfall using a cloud-resolving model: examples of two landfall typhoons in Taiwan. J. Climate, 28, 66–85. doi: http://dx.doi.org/10.1175/JCLI-D-14-00044.1
    Wang, W., Y.-H. Kuo, and T. T. Warner, 1993: A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev., 121, 2542–2561.
    Xu, W., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448–465.
    Yu, E., H.-J. Wang, Y.-Q. Gao, and J.-Q. Sun, 2011: Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. J. Mete. Res., Vol. 25, Issue 5, 581-592
    Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.
    Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010.
    Zhu, T. and Da-Lin Zhang, 2006: Numerical Simulation of Hurricane Bonnie (1998). Part II: Sensitivity to Varying Cloud Microphysical Processes. J. Atmos. Sci., 63, 109–126.
    中國天氣網(2009):湖南暴雨大暴雨頻發樓底4死5失蹤。2015年7月16日,取自http://www.weather.com.cn/zt/tqzt/09nmy/07/60986.shtml。
    中國天氣網天氣資訊(2009):巴中遭受特大冰雹襲擊受災人口5.6萬。2015年7月16日,取自http://www.weather.com.cn/static/html/article/20090521/32928.shtml。
    中國天氣網天氣資訊(2009):重慶石柱暴雨中樹倒瓦飛今夜強降雨須防滑坡。2015年7月16日,取自http://www.weather.com.cn/static/html/article/20090514/32237.shtml
    中國新聞網(2009):四川米易山洪並泥石流災害致22人死亡7人失蹤。2015年7月16日,取自http://news.qq.com/a/20090728/000013.htm。
    自由時報國際新聞(2009):中國湖北暴雨累積4死6失蹤。2009年7月16日,取自http://news.ltn.com.tw/news/world/breakingnews/221600/print。
    星洲日報國際新聞(2009):中國6月以來豪雨土崩以66死66人失蹤。2015年8月27日,取自http://news.sinchew.com.my/node/124539。
    新浪網新聞中心(2009):湖北恩施州近三十六萬人因暴雨受困。2015年7月16日,取自http://news.sina.com.cn/c/p/2009-05-14/093217812974.shtml。
    新華網平塘新聞(2009):平塘暴雨成災州縣聯手應對。2015年7月16日,取自http://www.gz.xinhuanet.com/zfpd/2009-05/20/content_16582327.htm。

    下載圖示
    QR CODE