簡易檢索 / 詳目顯示

研究生: 方若嫙
Fang, Jo-Hsuan
論文名稱: 以掌性銠金屬雙烯錯合物催化不對稱1,4-加成反應合成掌性含氮分子
Syntheses of Chiral Nitrogen-containing Molecules via Asymmetric 1,4-Addition Reactions Catalyzed by Rhodium/Chiral Diene Complexes
指導教授: 吳學亮
Wu, Hsyueh-Liang
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 314
中文關鍵詞: 鏡像選擇性掌性二烯配體銠催化不對稱合成共軛加成芳基硼酸β-胜肽
英文關鍵詞: Enantioselective, Chiral diene ligands, Rhodium-catalyzed, Asymmetric synthesis, Conjugate addition, Arylboronic acids, β-Peptides
DOI URL: https://doi.org/10.6345/NTNU202203482
論文種類: 學術論文
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壹、銠催化芳基硼酸與氮-特丁氧羰基保護的α,β-不飽和γ-內醯胺的不對稱1,4-加成反應:
    我們運用由左旋醋酸冰片酯合成出的一系列掌性雙環[2.2.1]二烯配體L1與一價銠金屬形成之催化劑,催化各種芳基硼酸14與氮-特丁氧羰基保護的α,β-不飽和γ-內醯胺195a進行不對稱1,4-加成反應。在0.5 mol%的Rh(I)/L1f催化劑量下,本反應可生成高產率 (31–>99%) 及高鏡像選擇性(93–>99.5% ee)的加成產物(R)-197。此法可應用至苯基海人酸207以及MCHR1拮抗劑302的形式合成。

    貳、銠催化芳基硼酸與α-取代的β-硝基丙烯酸酯的不對稱1,4-加成反應:
    本部分內容綜述各種芳基硼酸14與α-取代的β-硝基丙烯酸酯361的不對稱共軛加成反應。以5.0 mol%的Rh(I)/L1e進行催化反應,並利用KHF2做為添加劑,可製備出加成產物(R)-362,產率最高可至63%,鏡像超越值高達99% ee。此方法可應用至具有光學活性的β2,2-胺基酸369,β-內醯胺375,以及α,β2,2,α-胜肽380的不對稱合成。

    I.Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to N-Boc Protected α,β-Unsaturated γ-Lactam:
    A family of chiral bicyclo[2.2.1]heptadiene ligands L1 synthesized from L-(−)-bornyl acetate were utilized in the Rh(I)-catalyzed enantio- selective 1,4-addition of various arylboronic acids 14 to N-Boc-protected α,β-unsaturated γ-lactam 195a. In the presence of 0.5 mol% of a Rh(I)/L1f catalyst, the corresponding adducts (R)-197 were isolated in high yields (31–>99%) and excellent enantioselectivities (93–>99.5% ee). This metho- dology was employed for the formal synthesis of phenylkainic acid 207 and MCHR1 antagonist 302.

    II.Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to α-Substituted β-Nitroacrylates:
    Asymmetric conjugate addition of various arylboronic acids 14 to α-substituted β-nitroacrylates 361 was described. The reaction, catalyzed by 5.0 mol% of Rh(I)/L1e, provided the conjugate adduct (R)-362 in up to 63% yield and up to 99% ee using KHF2 as an additive. This method are applied to the asymmetric synthesis of optically active β2,2-amino acid 369, β-lactam 375, and α,β2,2,α-peptide 380.

    摘要............................ i Abstract......................... iii 目錄............................ v 圖目錄........................... xi 流程圖目錄........................ xiii 表目錄.......................... xxi 附圖目錄......................... xxv 中英文縮寫名稱對照表.................. xxxix 第一章 緒論........................ 1 第二章 過渡金屬催化有機合成反應.............. 9   第一節 前言...................... 9   第二節 有機金屬化學簡介................ 9   第三節 過渡金屬催化反應................ 10   第四節 過渡金屬催化循環機制.............. 11   第五節 有機合成試劑發展................ 15   第六節 結論...................... 16 第三章 銠催化的不對稱共軛加成反應............. 17   第一節 前言...................... 17   第二節 文獻回顧.................... 17 一、 α,β-不飽和羰基化合物的ECA反應.......... 17 二、 鏡像選擇性反應立體化學路徑............ 29 三、 掌性雙環二烯配體的開發與應用........... 31 四、 掌性雙環二烯配體在銠催化不對稱合成上的應用.... 41   第三節 實驗概念與設計................. 67   第四節 實驗結果與討論................. 71 一、 α,β-不飽和酯之製備................ 71 二、 α,β-不飽和酯的ECA反應.............. 72 三、 推測α,β-不飽和酯的銠催化ECA反應途徑....... 79   第五節 結論...................... 80 第四章 銠催化不對稱1,4-加成反應製備掌性4-芳基-2-吡咯啶酮. 81   第一節 前言...................... 81   第二節 文獻回顧.................... 82 一、 掌性4-芳基-2-吡咯啶酮的建構方式及合成應用.... 82 二、 α,β-不飽和γ-內醯胺的ECA反應與應用........ 94   第三節 實驗概念與設計................. 97   第四節 實驗結果與討論................. 98 一、 α,β-不飽和γ-內醯胺之合成............. 98 二、 α,β-不飽和γ-內醯胺的ECA反應........... 99 三、 推測α,β-不飽和γ-內醯胺的ECA反應途徑....... 109   第五節 結論..................... 112 第五章 苯基海人酸的形式合成............... 113   第一節 前言..................... 113   第二節 文獻回顧................... 114   第三節 實驗概念與設計................ 123   第四節 實驗結果與討論................ 124   第五節 結論..................... 132 第六章 MCHR1拮抗劑的形式合成.............. 133   第一節 前言..................... 133   第二節 文獻回顧................... 134   第三節 實驗概念與設計................ 136   第四節 實驗結果與討論................ 137   第五節 結論..................... 144 第七章 銠催化不對稱1,4-加成反應製備掌性硝基丙酸酯.... 145   第一節 前言..................... 145   第二節 文獻回顧................... 146 一、 掌性硝基丙酸酯的建構............... 146 二、 β2,2-胺基酸四級立體中心的建構.......... 149   第三節 實驗概念與設計................ 151   第四節 實驗結果與討論................ 153 一、 β-硝基丙烯酸酯化合物之合成........... 153 二、 β-硝基丙烯酸酯之銠催化ECA反應.......... 157 三、 掌性3-硝基-2-芳基丙酸酯的合成應用........ 174 四、 推測β-硝基丙烯酸酯的銠催化ECA反應途徑...... 179   第五節 結論..................... 184 第八章 總結論...................... 185 第九章 實驗部分..................... 187   第一節 分析儀器及基本實驗操作............ 187   第二節 α,β-不飽和羰基化合物............. 191 一、 α,β-不飽和酮與酯之合成............. 191 二、 α,β-不飽和酯化合物之加成............ 197   第三節 α,β-不飽和γ-內醯胺化合物........... 199 一、 α,β-不飽和γ-內醯胺之合成............ 199 二、 α,β-不飽和γ-內醯胺之加成............ 202 三、 苯基異海人酸的形式合成.............. 228 四、 MCHR1拮抗劑的形式合成.............. 230   第四節 β-硝基丙烯酸酯化合物............. 235 一、 β-硝基丙烯酸酯之合成.............. 235 二、 β-硝基丙烯酸酯之加成.............. 247 三、 β2,2-胺基酸和β-內醯胺及α,β2,2,α-胜肽的合成.. 272   第五節 其他研究................... 281 一、 氮-二苯基磷芳香亞胺之合成............ 281 二、 烯基硼酸頻哪醇酯之合成.............. 282 第十章 參考文獻..................... 287 附錄一 X-光單晶數據與ORTEP解析圖譜.......... - 1 - 附錄二 核磁共振光譜圖................ - 41 - 研究論文發表

    1. Shallenberger, R. S. Taste Chemistry; Chapman & Hall: London, UK, 1993.
    2. Rundlett, K. L.; Armstrong, D. W. Chirality 1994, 6, 277–282.
    3. Fahlbusch, K.-G.; Hammerschmidt, F.-J.; Panten, J.; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe D.; Surburg, H. Flavors and fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2003.
    4. Patil, P. A.; Kothekar, M. A. Indian J. Med. Sci. 2006, 60, 427–437.
    5. (a) Ehringer, H.; Hornykiewicz, O. Klin Wochenschr 1960, 38, 1236–1239. (b) Alachkar, A.; Brotchie, J. M.; Jones, O. T. Neurosci. Res. 2010, 67, 245–249. (c) Alam, M. R.; Yoshizawa, F.; Sugahara, K. Neurosci. Lett. 2011, 495, 126–129. (d) Huot, P.; Johnston, T. H.; Koprich, J. B.; Fox, S. H.; Brotchie, J. M. Neuropharmacology 2012, 63, 829–836.
    6. (a) Katzung, B. G.; Masters, S. B.; Trever, A. J. Basic and Clinical Pharmacology, 11th ed.; Tata Macgraw-Hill: Noida, UP, India, 2009. (b) Brunton, L. L.; Parker, K. L.; Blumenthal, D. K.; Buxton, I. L. O. Goodman and Gilman's The Pharmacological basis of therapeutics. In Goodman and Gilman's Manual of Pharmacology and Therapeutics, 12th ed.; The Mac Graw Hill Company: New York, 2011. (c) Beaulieu, J. M.; Gainetdinov, R. R. Pharmacol Rev. 2011, 63, 182–217. (d) Andreou, D.; Saetre, P.; Werge, T.; Andreassen, O. A.; Agartz, I.; Sedvall, G. C.; Hall, H.; Terenius, L.; Jönsson, E. G. Eur. Arch. Psychiatry Clin. Neurosci. 2012, 262, 549–556. (e) Chhabra, N.; Aseri, M. L.; Padmanabhan, D. Int. J. Appl. Basic Med. Res. 2013, 3, 16–18.
    7. (a) Rossi, S. The Australian Medicines Handbook Unit Trust. In Australian Medicines Handbook 2013; Australian Medicines Handbook Pty. Limited: Adelaide, SA, Australia, 2013. (b) Joint Formulary Committee. British National Formulary (BNF) 65; London, UK: Pharmaceutical Press.
    8. Dentsch, D. H. Chem. Tech. 1991, 3, 157–159.
    9. (a) Ager, D. Handbook of Chiral Chemicals, 2nd ed.; CRC Taylor & Francis Group: Boca Raton, FL, 2006, pp. 75–78, 81–82, 97–98. (b) Delgado, J. N.; Remers, W. A. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 9th ed.; J. B. Lippincott Co.: Philadelphia, PA, 1991, pp. 656–664.
    10. (a) Chen, C. S.; Shieh, W. R.; Lu, P. H.; Harriman, S.; Chen, C. Y. Biochim. Biophys. Acta. 1991, 1078, 411–417. (b) Tracy, T. S.; Hall, S. D. Drug Metab. Dispos. 1992, 20, 322–327. (c) Reichel, C.; Brugger, R.; Bang, H.; Geisslinger, G.; Brune, K. Mol. Pharmacol. 1997, 51, 576–582.
    11. (a) Adams, S. S.; Bough, R. G.; Cliffe, E. E.; Lessel, B.; Mills, R. F. N. Toxicol. Appl. Pharmacol. 1969, 15, 310–330. (b) Adams, S. S.; Bresloff, P.; Manson, G. C. J. Pharm. Pharmacol. 1976, 28, 156–157. (c) Geissliger, G.; Schuster, O.; Stock, K. P.; Loew, D.; Bach, G. L.; Brune, K. Eur. J. Clin. Pharmacol. 1990, 38, 493–497. (d) Bhushan, R.; Martens, J. Biomed. Chromatogr. 1998, 12, 309–316.
    12. Gram, L. N. Engl. J. Med. 1994, 331, 1354–1361.
    13. Steiner, T. J.; Ahmed, F.; Findley, L. J.; MacGregor, E. A.; Wilkinson, M. Cephalalgia 1998, 18, 283–286.
    14. (a) Black, J. W.; Stephenson, J. S. Lancet 1962, 2, 311–314. (b) Silber, B.; Holford, N. H. C.; Riegelman, S. J. Pharm. Sci. 1982, 71, 699–704. (c) Duthion, B.; Métro, T.-X.; Pardo, D. G.; Cossy, J. Tetrahedron 2009, 65, 6696–6706. (d) Lokhande, M. N.; Chopade, M. U.; Bhangare, D. N.; Nikalje, M. D. J. Braz. Chem. Soc. 2013, 24, 406–409.
    15. (a) Stock, J. P. P.; Dale, N. Brit. med. J. 1963, 2, 1230–1233. (b) Black, J. W.; Crowther, A. F.; Shanks, R. G.; Smith, L. H.; Dornhorst, A. C. The Lancet 1964, 283, 1080–1081. (c) Lucchesi, B. R.; Whitsitt, S. Prog. Cardiovasc. Dis. 1969, 11, 410–430. (d) Steenen, S. A.; van Wijk, A. J.; van der Heijden, G. J.; van Westrhenen, R.; de Lange, J.; de Jongh, A. J. Psychopharmacol. 2015, 30, 128–139.
    16. (a) Fleckerstein, A. Ann. Rev. Pharmac. Toxicol. 1977, 17, 149–166. (b) Singh, B. N.; Ellrodt, G.; Peter, C. T. Drugs 1978, 15,169–197. (c) Janis, R. A.; Scriabine, A. Biochem. Pharmac. 1983, 32, 3499–3507. (d) Bayer, R.; Kaufmann, R.; Mannhold, R. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1975, 290, 69–80. (e) Bayer, R.; Klausche, R.; Kaufman, R.; Mannhold, R. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1975, 290, 81–97. (f) Williamson, J. R.; Woodrow, M. L.; Scarpa, A. Rec. Adv. Stud. Cardiac Struct. Metab. 1975, 5, 61–71. (g) McMurtry, I. F.; Davidson, A. B.; Reeves, J. T.; Grover, R. F. Circ. Res. 1976, 38, 99–104.
    17. Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1982, 42, 4730–4733.
    18. Van Caillie-Bertrand, M.; Degenhart, H. J.; Luijendijk, I.; Bouquet, J.; Sinaasappel, M. Arch. Dis. Child. 1985, 60, 652–655.
    19. Aronson, J. K. Meyler's Side Effects of Analgesics and Anti- inflammatory Drugs; Elsevier: Amsterdam, 2009.
    20. (a) Franks, M. E.; Macpherson, G. R.; Figg, W. D. The Lancet 2004, 363, 1802–1811. (b) Moghe, V. V.; Kulkarni, U.; Parmar, U. I. Bombay Hosp. J. 2008, 50, 472–476. (c) Landesman-Dwyer, S. Appl. Res. Ment. Retard. 1982, 3, 241–263. (d) Kelsey F. O. J. Dent. Res. 1967, 46, 1201–1205.
    21. (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946–5952. (b) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007; Angew. Chem. 2002, 114, 2096–2107.
    22. (a) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856–5858. (b) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32. (c) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, 71, 1–13.
    23. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974–5976. (b) Rossiter, B.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464–465. (c) Martin, V.; Woodard, S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237–6240. (d) Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S.M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589–604. (e) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922–1925. (f) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (g) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (h) Johnson, R. A.; Sharpless, K. B. Comp. Org. Synth. 1991, 7, 389–436. (i) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113–126. (j) Sharpless, K. B., et al. J. Org. Chem. 1992, 57, 2768–2771. (k) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547. (l) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907–9908.
    24. (a) Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409. (b) Liu, C.-C.; Janmanchi, D.; Chen, C.-C.; Wu, H.-L. Eur. J. Org. Chem. 2012, 2503–2507. (c) Chung, Y.-C.; Janmanchi, D.; Wu, H.-L. Org. Lett. 2012, 14, 2766–2769. (d) Huang, K.-C.; Gopula, B.; Kuo, T.-S.; Chiang, C.-W.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2013, 15, 5730–5733. (e) Chen, C.-C.; Gopula, B.; Syu, J.-F.; Pan, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Org. Chem. 2014, 79, 8077–8085. (f) Gopula, B.; Chiang, C.-W.; Lee, W.-Z.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2014, 16, 632–635. (g) Gopula, B.; Tsai, Y.-F.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2015, 17, 1142–1145. (h) Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2015, 21, 11050–11055. (i) Wu, H.-L.; Chen, C.-C.; Liu, C.-C.; Wei, W.-T.; Fang, J.-H. U.S. Patent 8,586,810, 2013. (j) Fang, J.-H.; Chang, C.-A.; Gopula, B.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Asian J. Org. Chem. 2016, 5, 481–485. (k) Fang, J.-H.; Jian, J.-H.; Chang, H.-C.; Kuo, T.-S.; Lee, W.-Z.; Wu, P.-Y.; Wu, H.-L. Chem. Eur. J. 2017, 23, ASAP.
    25. (a) Cadet de Gassicourt, L.C. Mem. Math. Phys. 1760, 3, 623–637. (b) Zeise, W. Pogg. Ann. Phys. Chem. 1827, 9, 632–633. (c) Grignard, V. Compt. Rend. 1900, 130, 1322–1324. (d) Sabatier, P.; Senderens, J.-B. Compt. Rend. 1897, 124, 616–618. (e) Sabatier, P.; Senderens, J.-B. Compt. Rend. 1901, 132, 210–212. (f) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 426, 541. (g) Natta, G.; Pino, P.; Corradti, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708. (h) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125–2126. (i) Fischer, E. O.; Pfab, W. Zeitschrift für Naturforschung B 1952, 7, 377–379. (j) Hérisson, J. L.; Chauvin, Y. Macromol. Chem. 1971, 141, 161–176. (k) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875–3886. (l) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974–3975. (m) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320–2322. (n) King, A. O.; Okukado, N.; Negishi, E.-I. J. Chem. Soc., Chem. Commun. 1977, 683–684. (o) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437–3440. (p) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866.
    26. (a) Kumada, M. Pure Appl. Chem. 1980, 52, 669–679. (b) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.; Kumada, M. Organometallics 1982, 1, 542–549.
    27. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066.
    28. Sonogashira, K. Comp. Org. Synth. 1991, 3, 521–549.
    29. (a) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729–6731. (b) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683–684. (c) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821–1823. (d) Negishi, E.; Takahashi, T.; King, A. O. Org. Synth. 1993, 8, 430. (e) Negishi, E.; Takahashi, T.; Baba, S. Org. Synth. 1993, 8, 295–297.
    30. (a) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508–524; Angew. Chem. 1986, 98, 504–519. (b) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1–677.
    31. (a) Miyaura, N.; Yanggi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513–519. (b) Cho, C. S.; Motofusa, S.; Ohe, K.; Uemura, S. J. Org. Chem. 1995, 60, 883–888. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
    32. (a) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem. 1983, 48, 912–914. (b) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918–920. (c) Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5415–5421. (d) Gouda, K.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1996, 61, 7232–7233. (e) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 38, 439–442. (f) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780–1787. (g) Hirabayashi, K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.; Hiyama, T. J. Org. Chem. 2000, 65, 5342–5349. (h) Hiyama, T. J. Organomet. Chem. 2002, 653, 58–61. (i) Nakao, Y.; Takeda, M.; Matsumoto, T.; Hiyama, T. Angew. Chem. Int. Ed. 2010, 49, 4447–4450; Angew. Chem. 2010, 122, 4549–4552.
    33. Wang, J.; Liu, B.; Zhao, H.; Wang, J. Organometallics 2012, 31, 8598–8607.
    34. (a) Takahashi, H.; Hossain, K. M.; Nishihara, Y.; Shibata, T.; Takagi, K. J. Org. Chem. 2006, 71, 671–675. (b) Lai, C.-S.; Kao, H.-L.; Wang, Y.-J.; Lee, C.-F. Tetrahedron Lett. 2012, 53, 4365–4367. (c) Nakamura, K.; Yasui, K.; Tobisu, M.; Chatani, N. Tetrahedron 2015, 71, 4484–4489.
    35. Otomaru, Y.; Senda, T.; Hayashi, T. Org. Lett. 2004, 6, 3357–3359.
    36. Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229–4231.
    37. (a) Lalic, G.; Corey, E. J. Org. Lett. 2007, 9, 4921–4923. (b) Brock, S.; Hose, D. R. J.; Moseley, J. D.; Parker, A. J.; Patel, I.; Williams, A. J. Org. Process Res. Dev. 2008, 12, 496–502. (c) Burgey, C. S.; Paone, D. V.; Shaw, A. W.; Deng, J. Z.; Nguyen, D. N.; Potteiger, C. M.; Graham, S. L.; Vacca, J. P.; Williams, T. M. Org. Lett. 2008, 10, 3235–3238.
    38. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579–5580.
    39. (a) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1999, 40, 6957–6961. (b) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi, T. Tetrahedron: Asym. 1999, 10, 4047–4056. (c) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852–6856. (d) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron: Asym. 2005, 16, 1673–1679. (e) Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341–344.
    40. Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 1999, 121, 11591–11592.
    41. Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8479–8482.
    42. Sakuma, S.; Sakai, M.; Itooka, R.; Miyaura, N. J. Org. Chem. 2000, 65, 5951–5955.
    43. Sakuma, S.; Miyaura, N. J. Org. Chem. 2001, 66, 8944–8946.
    44. Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000–6004.
    45. (a) Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423–434. (b) Fuji, K.; Node, M. Synlett 1991, 603–610.
    46. Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S. J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215–10216.
    47. Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716–10717.
    48. Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052–5058.
    49. Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918–9919.
    50. Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 3909–3912; Angew. Chem. 2005, 117, 3977–3980.
    51. Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54–55.
    52. Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K. Organometallics 2003, 12, 4188–4196.
    53. Hayashi, T. Russ. Chem. Bull. 2003, 52, 2595–2605.
    54. (a) Paiaro, G.; Panunzi, A.; De Renzi, A. Tetrahedron Lett. 1966, 7, 3905–3908. (b) Panunzi, A.; De Renzi, A.; Paiaro, G. Inorg. Chim. Acta. 1967, 1, 475–478. (c) Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Comprehensive Organometallic Chemistry II; Pergamon: Oxford, 1995; Vols. 1-14. (d) Aylett, B. J.; Lappert, M. F.; Pauson, P. L. Dictionary of Organometallic Compounds II; Chapman & Hall: London, 1995; Vols. 1-5.
    55. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, H. J. Am. Chem. Soc. 2003, 125, 11508–11509.
    56. (a) Glorius, F. Angew. Chem. Int. Ed. 2004, 43, 3364–3366; Angew. Chem. 2004, 116 3444–3446. (b) Defieber, C.; Paquin, J.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873–3876. (c) Paquin, J.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. 2005, 7, 3821–3824. (d) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503–2508. (e) Kina, A.; Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889–5892. (f) Lang, F.; Breher, F.; Stein, D.; Grutzmacher, H. Organometallics 2005, 24, 2997–3007. (g) Berthon-Gelloz, G.; Hayashi, T. J. Org. Chem. 2006, 71, 8957–8960. (h) Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal. 2007, 349, 2331–2237. (i) Nishimura, T.; Nagaosa, M.; Hayashi, T. Chem. Lett. 2008, 37, 860–861. (j) Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387–4389. (k) Defieber, C.; Grützmacher, H.; Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 4482–4502; Angew. Chem. 2008, 120, 4558–4579. (l) Gendrineau, T.; Chuzel, O.; Eijsberg, H.; Genet, J.-P.; Darses, S. Angew. Chem. Int. Ed. 2008, 47, 7669–7672; Angew. Chem. 2008, 120, 7783–7786. (m) Shintani, R.; Hayashi, T. Aldrichimica Acta 2009, 42, 31–38. (n) Shintani, R.; Ichikawa, Y.; Takatsu, K.; Chen, F. X.; Hayashi, T. J. Org. Chem. 2009, 74, 869–873. (o) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815–4817. (p) Shintani, R.; Takeda, M.; Nishimura, T.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, 3969–3971; Angew. Chem. 2010, 122, 4061–4063. (q) Tian, P.; Dong, H.-Q.; Lin, G.-Q. ACS Catal. 2012, 2, 95–119.
    57. Noël, T.; Vandyck, K.; Van der Eycken, J. Tetrahedron 2007, 63, 12961–12967.
    58. Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett. 2004, 6, 3425–3427.
    59. (a) Fischer, C.; Defieber, C.; Takeyuki, S.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628–1629. (b) Hayashi, T.; Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005, 34, 1480–1481. (c) Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213–3214. (d) Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757–4759. (e) Paquin, J. F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850–10851. (f) Tokunaga, N.; Hayashi, T. Adv. Synth. Catal. 2007, 349, 513–516. (g) Sörgel, S.; Tokunaga, N.; Sasaki, K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10, 589–592.
    60. (a) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337. (b) Feng, C.-G.; Wang, Z.-Q.; Shao, C.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10, 4101–4104.
    61. Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307–310.
    62. Gendrineau, T.; Genêt, J. P.; Darses, S. Org. Lett. 2009, 11, 3486–3489.
    63. Luo, Y.; Carnell, A. J. Angew. Chem. Int. Ed. 2010, 49, 2750–2754; Angew. Chem. 2010, 122, 2810–2814.
    64. Brown, M. K.; Corey, E. J. Org. Lett. 2010, 12, 172–175.
    65. Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. 2000, 122, 10464–10465.
    66. Davies, H. M. L.; Gregg, T. M. Tetrahedron Lett. 2002, 43, 4951–4953.
    67. Mesa, R. A.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2012, 11, 103–104.
    68. 蔡蘊凡(2015)。銠金屬(I)/掌性雙烯配體催化有機芳香和烯基硼酸試劑對β-吡唑-1-基丙烯酸酯行1,4-不對稱加成反應:Ruxolitinib的形式合成(Rhodium(I)/Chiral Diene-Catalyzed Asymmetric 1,4- Addition Reaction of Aryl and Alkenyl Boronic Acids to β‑Pyrazol-1-yl Acrylates: Formal Synthesis of Ruxolitinib)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    69. (a) Yao, W.; Zhuo, J.; Burns, D. M.; Xu, M.; Zhang, C.; Li, Y.-L.; Qian, D.-Q.; He, C.; Weng, L.; Shi, E.; Lin, Q.; Agrios, C.; Burn, T. C.; Caulder, E.; Covington, M. B.; Fridman, J. S.; Friedman, S.; Katiyar, K.; Hollis, G.; Li, Y.; Liu, C.; Liu, X.; Marando, C. A.; Newton, R.; Pan, M.; Scherle, P.; Taylor, N.; Vaddi, K.; Wasserman, Z. R.; Wynn, R.; Yeleswaram, S.; Jalluri, R.; Bower, M.; Zhou, B.-B.; Metcalf, B. J. Med. Chem. 2007, 50, 603–606. (b) Zhuo, J.; Burns, D. M.; Zhang, C.; Xu, M.; Weng, L.; Qian, D.-Q.; He, C.; Lin, Q.; Li, Y.-L.; Shi, E.; Agrios, C.; Metcalf, B.; Yao, W. Synlett 2007, 460–464.
    70. Roussi, G.; Zhang, J. Tetrahedron 1991, 47, 5161–5172.
    71. 張欣智(2014)。銠金屬(I)/掌性雙烯配體催化芳基硼酸至4-酮基丁烯醯胺化合物行不對稱1,4-加成反應(Highly Enantioselective 1,4-Addition Reaction of Arylboronic Acids to 4-Oxobutenamides Catalyzed by Rh(I)/Chiral Diene Complexes)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    72. (a) Packer, M. J.; Scott, J. S.; Stocker, A. P.; Whittamore, R. O. WO 2008/099145, 2008. (b) Harada, K.; Ito, T. WO 2008/069313, 2008.
    73. (a) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 4611–4614; Angew. Chem. 2005, 117, 4687–4690. (b) Seiler, M. P.; Nozulak, J. WO 2001/055132, 2001.
    74. (a) Boiteau, J. G.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 681–684. (b) Duursma, A.; Hoen, R.; Schuppan, J.; Hulst, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 3111–3113.
    75. Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389–1391.
    76. 周孟義(2015)。銠金屬(I)/掌性雙烯配體催化芳香硼酸與α-二酮之不對稱1,2-加成反應(Enantioselective 1,2-Addition of Aryl Boronic Acids to α-Diketones Using Rh/Diene Complexes)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    77. 潘治翰(2013)。銠金屬(I)/掌性雙烯配體催化二甲基鋅對芳香亞胺進行不對稱加成反應及天然物(S)-Salsolidine的合成應用(Asymmetric Addition of Dimethylzinc to N-Tosyl and N-Nosyl Aldimines Catalyzed by a Rhodium-Diene Complex Toward the Synthesis of Chiral 1-Arylethylamines: Enantioselective Synthesis of (S)-(−)-Salsolidine)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    78. 吳文茜(2013)。銠金屬(I)/掌性雙烯配體催化二甲基鋅對二苯基次磷醯亞胺進行不對稱加成反應及藥物 NPS-R-568的合成應用(Asymmetric Addition of Dimethylzinc to N-(P,P-Diphenylphosphin- oyl) Imine Catalyzed by a Rhodium-Diene Complex toward the Synthesis of NPS-R-568)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    79. 廖柏翔(2014)。銠(I)金屬催化烯基硼酸試劑對α,β-不飽和酮類化合物的不對稱1,4-加成反應(Rhodium-Catalyzed Asymmetric 1,4-Addition of Alkenylboronic Acids to α,β-Unsaturated Carbonyl Compounds)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    80. 許競太(2014)。銠金屬(I)結合掌性雙環[2.2.1]雙烯配體催化四芳香基硼鈉鹽對β,β-雙取代 α,β-不飽和酮類化合物進行不對稱1,4-加成反應(Rhodium/Diene-Catalyzed 1,4-Addition Reaction to β,β-Di- substituted α,β-Unsaturated Ketones: Enantioselective Construction of Chiral Quaternary Carbon Stereocenters)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    81. 徐志龍(2014)。銠(I)金屬結合掌性雙環[2.2.1]雙烯配體催化β-硝基烯類化合物與芳香硼酸之不對稱1,4-加成反應:合成掌性β2-胺基酯化合物應用研究(Enantioselective 1,4-Addition Reaction of Arylboronic Acids to β-Nitroolefin Derivatives Catalyzed by Rh(I)/[2.2.1] Chiral Diene Catalyst: Synthesis of Chiral β2-Amino Esters)。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    82. 許晉逢(2013)。銠金屬(I)/掌性雙烯配體催化芳香族硼酸對芳香亞胺進行不對稱加成反應及掌性咪唑的合成應用。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    83. Allen, M. S.; Darby, N.; Salisbury, P.; Sigurdson, E. R.; Money, T. Can. J. Chem. 1979, 57, 733–741.
    84. (a) Womack, E. B.; McWhirter, J. Org. Synth. 1940, 20, 77–78. (b) Baumgarten, H. E. J. Am. Chem. Soc. 1953, 75, 1239–1240. (c) Evans, D. A.; Gauchet-Prunet, J. A.; Carreira, E. M.; Charette, A. B. J. Org. Chem. 1991, 56, 741–750. (d) Wright, S. W.; Hageman, D. L.; Wright, A. S.; McClure, L. D. Tetrahedron Lett. 1997, 38, 7345–7348. (e) Kourouli, T.; Kefalas, P.; Ragoussis, N.; Ragoussis, N.; Ragoussis, V. J. Org. Chem. 2002, 67, 4615–4618. (f) Masllorens, J.; Moreno-Mañas, M.; Pla-Quintana, A.; Roglans, A. Org. Lett. 2003, 5, 1559–1561. (g) Tanaka, K.; Kobayashi, T.; Mori, H.; Katsumura, S. J. Org. Chem. 2004, 69, 5906–5925. (h) Paul, S.; Gupta, M. Synth. Commun. 2005, 35, 213–222. (i) Thiot, C.; Mioskowski, C.; Wagner, A. Eur. J. Org. Chem. 2009, 3219–3227.
    85. Cappi, M. W.; Flood, R. W.; Roberts, S. M.; Skidmore, J.; Williamson, N. M.; Chen, W.-P.; Liao, Y.-W.; Smith, J. A. Chem. Commun. 1998, 1159–1160.
    86. Barrett, A. G. M.; Smith, M. L.; Stock, N. S. Chem. Commun. 1999, 133–134.
    87. (a) Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada, H. J. Antibiotics 1995, 48, 733–735. (b) Mizushina, Y.; Kobayashi, S.; Kuramochi, K.; Nagata, S.; Sugawara, F.; Sakaguchi, K. Biochem. Biophys. Res. Commun. 2000, 273, 784–788. (c) Hayashi, Y.; Kanayama, J.; Yamaguchi, J.; Shoji, M. J. Org. Chem. 2002, 67, 9443–9448. (d) 姜廣策,姚汝華,林永成(2001)。海洋半知類真菌次級代謝物研究概況。微生物學雜誌,21(3),41–44。
    88. (a) Reddy, P. A.; Hsiang, B. C. H.; Latifi, T. N.; Hill, M. W.; Woodward, K. E.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem. 1996, 39, 1898–1906. (b) Spaltenstein, A.; Almond, M. R.; Bock, W. J.; Cleary, D. G.; Furfine, E. S.; Hazen, R. J.; Kazmierski, W. M.; Salituro, F. G.; Tung, R. D.; Wright, L. Bioorg. Med. Chem. Lett. 2000, 10, 1159–1162. (c) Barnes, D. M.; Ji, J.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton, H. E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger, S. J.; Zhang, J. J. Am. Chem. Soc. 2002, 124, 13097–13105. (d) Tang, K.; Zhang, J.-T. Neurol. Res. 2002, 24, 473–478. (e) Kazmierski, W. M.; Andrews, W.; Furfine, E.; Spaltenstein, A.; Wright, L. Bioorg. Med. Chem. Lett. 2004, 14, 5689–5692. (f) Sarma, K. D.; Zhang, J.; Huang, Y.; Davidson, J. G. Eur. J. Org. Chem. 2006, 3730–3737.
    89. (a) Nöth, J.; Frankowski, K. J.; Neuenswander, B.; Aubé, J.; Reiser, O. J. Comb. Chem. 2008, 10, 456–459. (b) Enz, A.; Feuerbach, D.; Frederiksen, M. U.; Gentsch, C.; Hurth, K.; Müller, W.; Nozulak, J.; Roy, B. L. Bioorg. Med. Chem. Lett. 2009, 19, 1287–1291. (c) Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2010, 75, 6173–6181 and references cited therein. (d) Fenster, E.; Hill, D.; Reiser, O.; Aubé, J. Beilstein J. Org. Chem. 2012, 8, 1804–1813.
    90. (a) Enders, D.; Niemeier, O. Heterocycles 2005, 66, 385–403. (b) Paraskar, A. S.; Sudalai, A. Tetrahedron 2006, 62, 4907–4916. (c) Wee, A. G. H.; Duncan, S. C.; Fan, G. J. Tetrahedron: Asymmetry 2006, 17, 297–307. (d) Zu, L.-S.; Xie, H.-X.; Li, H.; Wang, J.; Wang, W. Adv. Synth. Catal. 2007, 349, 2660–2664. (e)Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389–1391. (f) Bantreil, X.; Prestat, G.; Madec, D.; Fristrup, P.; Poli, G. Synlett 2009, 1441–1444. (g) Wang, J.; Li, W.; Liu, Y.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 1280–1283. (h) Yang, X.-F.; Ding, C.-H.; Li, X.-H.; Huang, J.-Q.; Hou, X.-L.; Dai, L.-X.; Wang, P.-J. J. Org. Chem. 2012, 77, 8980–8985. (i) Chen, D.-F.; Wu, P.-Y.; Gong, L.-Z. Org. Lett. 2013, 15, 3958–3961.
    91. (a) He, Y.; Woodmansee, D.; Choi, H.; Wang, Z.; Wu, B.; Nguyen, T. (Irm Llc) WO2006081562, 2006. (b) Kuuloja, N.; Vaismaa, M.; Franzén, R. Tetrahedron, 2012, 68, 2313–2318. (c) Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2011, 13, 788–791. (d) Verniest, G.; Boterberg, S.; Bombeke, F.; Stevens, C. V.; De Kimpe, N. Synlett 2004, 1059–1063. (e) Tonogaki, K.; Itami, K.; Yoshida, J. J. Am. Chem. Soc. 2006, 128, 1464–1465.
    92. (a) Trabocchi, A.; Guarna, F.; Guarna, A. Curr. Org. Chem. 2005, 9, 1127–1153. (b) Ordóñez, M.; Cativiela, C. Tetrahedron: Asymmetry 2007, 18, 3–99.
    93. Yu, M. S.; Lantos, I.; Peng, Z. Q.; Yu, J.; Cacchio, T. Tetrahedron Lett. 2000, 41, 5647–5651.
    94. (a) Sobocinska, M.; Zobacheva, M. M.; Perekalin, V. V.; Kupryszewski, G. Pol. J. Chem. 1979, 53, 435–446. (b) Zelle, R. Z. Synthesis 1991, 1023–1026.
    95. (a) Miyaura, N. Organoboranes for Syntheses, ACS Symp. Ser. 783 (Eds.: Ramachandran, P. V.; Brown, H. C.); American Chemical Society: Washington, DC, 2000, pp. 94–107. (b) Hayashi, T. Synlett 2001, 879–887. (c) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196. (d) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829–2844. (e) Feng, X.; Du, H. Asian J. Org. Chem. 2012, 1, 204–213.
    96. (a) Curti, C.; Sartori, A.; Battistini, L.; Rassu, G.; Burreddu, P.; Zanardi, F.; Casiraghi, G. J. Org. Chem. 2008, 73, 5446–5451. (b) Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H. Angew. Chem. Int. Ed. 2011, 50, 5682–5686; Angew. Chem. 2011, 123, 5800–5804.
    97. (a) Parsons, A. F. Tetrahedron 1996, 52, 4149–4174. (b) Moloney, M. G. Nat. Prod. Rep. 1998, 15, 205–219. (c) Moloney, M. G. Nat. Prod. Rep. 1999, 16, 485–498. (d) Moloney, M. G. Nat. Prod. Rep. 2002, 19, 597–616.
    98. (a)Morita,Y.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2005, 7, 4337–4340. (b) Poisson, J.-F.; Orellana, A.; Greene, A. E. J. Org. Chem. 2005, 70, 10860–10863. (c) Pandey, S. K.; Orellana, A.; Greene, A. E.; Poisson, J.-F. Org. Lett. 2006, 8, 5665–5668. (d) Sakaguchi, H.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2007, 9, 1635–1638. (e) Chalker, J. M.; Yang, A.; Deng, K.; Cohen, T. Org. Lett. 2007, 9, 3825–3828. (f) Jung, Y. C.; Yoon, C. H.; Turos, E.; Yoo, K. S.; Jung, K. W. J. Org. Chem. 2007, 72, 10114–10122. (g) Sakaguchi, H.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2008, 10, 1711–1714. (h) Tomooka, K.; Akiyama, T.; Man, P.; Suzuki, M. Tetrahedron Lett. 2008, 49, 6327–6329. (i) Farwick, A.; Helmchen, G. Org. Lett. 2010, 12, 1108–1111. (j) Kitamoto, K.; Sampei, M.; Nakayama, Y.; Sato, T.; Chida, N. Org. Lett. 2010, 12, 5756–5759.
    99. (a) Konno, K.; Hashimoto, K.; Ohfune, Y.; Matsumoto, T. Tetrahedron Lett. 1986, 27, 607–610. (b) Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Am. Chem. Soc. 1987, 109, 5523–5524. (c) Konno, K.; Hashimoto, K.; Ohfune, Y.; Shirahama, H.; Matsumoto, T. J. Am. Chem. Soc. 1988, 110, 4807–4815. (d) Baldwin, J. E.; Li, C. S. J. Chem. Soc., Chem. Commun. 1988, 4, 261–263. (e) Horikawa, M.; Hashimoto, K.; Shirahama, H. Tetrahedron Lett. 1993, 34, 331–334. (f) Barco, A.; Benetti, S.; Pollini, G. P.; Spalluto, G.; Zanirato, V. Gazz. Chim. Ital. 1993, 123, 185–188. (g) Baldwin, J. E.; Fryer, A. M.; Pritchard, G. J.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron Lett. 1998, 39, 707–710.
    100. Hashimoto, K.; Horikawa, M.; Shirahama, H. Tetrahedron Lett. 1990, 31, 7047–7050.
    101. (a) Hashimoto, K.; Shirahama, H. Tetrahedron Lett. 1991, 32, 2625–2628. (b) Baldwin, J. E.; Rudolph, M. Tetrahedron Lett. 1994, 35, 6163–6166. (c) Horikawa, M.; Shirahama, H. Synlett 1996, 95–96. (d) Maeda, H.; Kraus, G. A. J. Org. Chem. 1997, 62, 2314–2315. (e) Baldwin, J. E.; Bamford, S. J.; Fryer, A. M.; Rudolph, M.; Wood, M. E. Tetrahedron 1997, 53, 5255–5272. (f) Baldwin, J. E.; Fryer, A. M.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron 1997, 53, 5273–5290. (g) Bryans, J. S.; Large, J. M.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 1 1999, 2905–2910. (h) Itadani, S.; Takai, S.; Tanigawa, C.; Hashimoto, K.; Shirahama, H. Tetrahedron Lett. 2002, 43, 7777–7780. (i) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036–4037. (j) Higashi, T.; Isobe, Y.; Ouchi, H.; Suzuki, H.; Okazaki, Y.; Asakawa, T.; Furuta, T.; Wakimoto, T.; Kan, T. Org. Lett. 2011, 13, 1089–1091.
    102. Takita, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2011, 13, 2068–2070.
    103. Yu, H.-J.; Shao, C.; Cui, Z.; Feng, C.-G.; Lin, G.-Q. Chem. Eur. J. 2012, 18, 13274–13278.
    104. Fox, B. M.; Natero, R.; Richard, K.; Connors, R.; Roveto, P. M.; Beckmann, H.; Haller, K.; Golde, J.; Xiao, S.-H.; Kayser, F. Bioorg. Med. Chem. Lett. 2011, 21, 2460–2467.
    105. (a) Daniels, D. S.; Petersson, E. J.; Qiu, J. X.; Schepartz, A. J. Am.Chem. Soc. 2007, 129, 1532–1533. (b) Perks, B. (2007, February 7). Protein’s non-natural alternative. Chemistry World. Retrieved from https://www.chemistryworld.com/news/proteins-non-natural-alternative/1015412.article
    106. (a) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015–2022. (b) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219–3232. (c) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366–1375.
    107. (a) Juaristi, E.; Soloshonok, V. Enantioselective Synthesis of β-Amino Acids, 2nd ed.; Wiley-VCH: New York, 2005. (b) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1–15. (c) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991–8035. (d) Yang, J. W.; Stadler, M.; List, B. Angew. Chem. Int. Ed. 2007, 46, 609–611; Angew. Chem. 2007, 119, 615–617. (e) Yang, J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B. Nature 2008, 452, 453–455.
    108. Pinho, V. D.; Gutmann, B.; Kappe, C. O. RSC Adv. 2014, 4, 37419–37422.
    109. (a) Lelais, G.; Seebach, D. Biopolymers (Peptide Sci.) 2004, 76, 206–243. (b) Seebach, D.; Beck, A. K.; Capone, S.; Deniau, G.; Grošelj, U.; Zass, E. Synthesis 2009, 1–32. (c) Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C. F., III J. Am.Chem. Soc. 2002, 124, 1866–1867. (d) Davies, H. M. L.; Venkataramani, C. Angew. Chem. Int. Ed. 2002, 41, 2197–2199; Angew. Chem. 2002, 114, 2301–2303. (e) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442–4443. (f) Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 3700–3701. (g) Rimkus, A.; Sewald, N. Org. Lett. 2003, 5, 79–80. (h) Sibi, M. P.; Patil, K. Angew. Chem. Int. Ed. 2004, 43, 1235–1238; Angew. Chem. 2004, 116, 1255–1258. (i) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z. Org. Lett. 2006, 8, 3359–3362. (j) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804–6805. (k) Chi, Y.; English, E. P.; Pomerantz, W. C.; Horne, W. S.; Joyce, L. A.; Alexander, L. R.; Fleming, W. S.; Hopkins, E. A.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 6050–6055. (l) Martin, N. J. A.; Cheng, X.; List, B. J. Am. Chem. Soc. 2008, 130, 13862–13863. (m) Lu, H.-H.; Wang, X.-F.; Yao, C.-J.; Zhang, J.-M.; Wu, H.; Xiao, W.-J. Chem. Commun. 2009, 4251–4253. (n) Blay, G.; Hernández-Olmos V.; Pedro, J. R. Org. Biomol. Chem. 2008, 6, 468–476. (o) Xu, H.; Wolf, C. Synlett 2010, 2765–2770.
    110. (a) Liu, T.-Y.; Li, R.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Chem. Eur. J. 2006, 13, 319–327. (b) Avenoza, A.; Busto, J. H.; Jiménez-Osés, G.; Peregrina, J. M. J. Org. Chem. 2006, 71, 1692–1695. (c) Avenoza, A.; Busto, J. H.; Jiménez-Osés, G.; Peregrina, J. M. Org. Lett. 2006, 8, 2855–2858. (d) Edmonds, M. K.; Graichen, F. H. M.; Gardiner, J.; Abell, A. D. Org. Lett. 2008, 10, 885–887.
    111. Eilitz, U.; Leßmann, F.; Seidelmann, O.; Wendisch, V. Tetrahedron: Asymmetry 2003, 14, 189–191.
    112. (a) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741–744. (b) Menche, D.; Arikan, F. Synlett 2006, 841–844. (c) Zhang, Z.; Schreiner, P. R. Synlett 2007, 1455–1457. (d) Menche, D.; Bohm, S.; Li, J.; Rudolph, S.; Zander, W. Tetrahedron Lett. 2007, 48, 365–369. (e) You, S.-L. Chem. Asian J. 2007, 2, 820–827. (f) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327–1339. (g) Connon, S. J. Org. Biomol. Chem. 2007, 5, 3407–3417.
    113. (a) Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 4875–4881. (b) Jayakanthan, K.; Madhusudanan, K. P.; Vankar, Y. D. Tetrahedron 2004, 60, 397–403.
    114. Eilitz, U.; Lessmann, F.; Seidelmann, O.; Wendisch, V. Tetrahedron: Asymmetry 2003, 14, 3095–3097.
    115. Schneider, J. F.; Lauber, M. B.; Muhr, V.; Kratzer, D.; Paradies, J. Org. Biomol. Chem. 2011, 9, 4323–4327.
    116. Csuk, R.; Heller, L.; Siewert, B.; Gutnov, A.; Seidelmann, O.; Wendisch, V. Bioorg. Med. Chem. Lett. 2014, 24, 4011–4013.
    117. Li, S.; Xiao, T.; Li, D.; Zhang, X. Org. Lett. 2015, 17, 3782–3785.
    118. Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T. J. Am. Chem. Soc. 1989, 111, 9134–9135.
    119. (a) Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946–3949. (b) Zhang, F.-G.; Yang, Q.-Q.; Xuan, J.; Lu, H.-H.; Duan, S.-W.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2010, 12, 5636–5639.
    120. Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732–733.
    121. Kastl, R.; Wennemers, H. Angew. Chem. Int. Ed. 2013, 52, 7228–7232; Angew. Chem. 2013, 125, 7369–7373.
    122. Zhong, Y.; Ma, S.; Xu, Z.; Chang, M.; Wang, R. RSC Adv. 2014, 4, 49930–49933.
    123. Chen, S.; Lou, Q.; Ding, Y.; Zhang, S.; Hu, W.; Zhao, J. Adv. Synth. Catal. 2015, 357, 2437–2441.
    124. For Rh catalysts: (a) Wang, Z.-Q.; Feng, C.-G.; Zhang, S.-S.; Xu, M.-H.; Lin, G.-Q. Angew. Chem. Int. Ed. 2010, 49, 5780–5783; Angew. Chem. 2010, 122, 5916–5919. (b) Lang, F.; Chen, G.; Li, L.; Xing, J.; Han, F.; Cun, L.; Liao, J. Chem. Eur. J. 2011, 17, 5242–5245. (c) Xing, J.; Chen, G.; Cao, P.; Liao, J. Eur. J. Org. Chem. 2012, 1230–1236. (d) Xue, F.; Wang, D.; Li, X.; Wan, B. J. Org. Chem. 2012, 77, 3071–3081. (e) Jumdea, V. R.; Iuliano, A. Adv. Synth. Catal. 2013, 355, 3475–3483. For organocatalysts: (f) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212–4215; Angew. Chem. 2005, 117, 4284–4287. (g) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901–2904. (h) Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077–3079. (i) Laars, M.; Ausmees, K.; Uudsemaa, M.; Tamm, T.; Kanger, T.; Lopp, M. J. Org. Chem. 2009, 74, 3772–3775. (j) Demir, A. S.; Eymur, S. Tetrahedron: Asymmetry 2010, 21, 112–115. (k) Yoshida, M.; Masaki, E.; Ikeharab, H.; Hara, S. Org. Biomol. Chem. 2012, 10, 5289–5297. (l) Hestericová, M.; Šebesta, R. Tetrahedron 2014, 70, 901–905. (m) Cortes-Clerget, M.; Gager, O.; Monteil, M.; Pirat, J.; Migianu-Griffoni, E.; Deschamp, J.; Lecouveya, M. Adv. Synth. Catal. 2016, 358, 34–40.
    125. 黃崑致(2013)。I. 銠(I)金屬結合掌性配位體催化不對稱1,4-加成在β-Nitrostyrenes化合物及應用在3,4-二氫異喹啉和(S)-SKF 38393的形式合成。II. 銠(I)金屬結合掌性配位體催化不對稱1,4-加成在β-Nitroacrylate化合物。碩士論文,國立臺灣師範大學化學研究所,台北,臺灣。
    126. Ishibashi, H.; Kobayashi, T.; Machida, N.; Tamura, O. Tetrahedron 2000, 56, 1469–1473.
    127. Wong, M.-K.; Chung, N.-W.; He, L.; Wang, X.-C.; Yan, Z.; Tang, Y.-C.; Yang, D. J. Org. Chem. 2003, 68, 6321–6328.
    128. Porel, M.; Ottaviani, M. F.; Jockusch, S.; Jayaraj, N.; Turro, N. J.; Ramamurthy, V. Chem. Commun. 2010, 46, 7736–7738.
    129. (a) Swiderska, M. A.; Stewart, J. D. Org. Lett. 2006, 8, 6131–6133. (b) Volkova, Y. A.; Averina, E. B.; Grishin, Y. K.; Rybakov, V. B.; Kuznetsova, T. S.; Zefirov, N. S. Tetrahedron Lett. 2011, 52, 2910–2913. (c) Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.; Meggers, E. Angew. Chem. Int. Ed. 2013, 52, 14021–14025; Angew. Chem. 2013, 125, 14271–14275.
    130. Knabe, J.; Buchheit, W. Arch. Pharm. 1985, 318, 593–600.
    131. Ramesh, C.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Tetrahedron Lett. 2010, 51, 5234–5237.
    132. Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776–779.
    133. Cativiela, C.; Diaz-de-Villegas, M. D.; Gálvez, J. A. J. Org. Chem. 1994, 59, 2497–2505.
    134. Saravanan, S.; Sadhukhan, A.; Khan, N. H.; Kureshy, R. I.; Abdi, S. H. R.; Bajaj, H. C. J. Org. Chem. 2012, 77, 4375–4384.
    135. Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101: 1–18.
    136. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
    137. (a) Ballini, R.; Fiorini, D.; Palmieri, A. Tetrahedron Lett. 2004, 45, 7027–7029. (b) Ballini, R.; Gabrielli, S.; Palmieri, A.; Petrini, M. Tetrahedron 2008, 64, 5435–5441.
    138. Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals.
    139. Itoh, K.; Tsuruta, A.; Ito, J.; Yamamoto, Y.; Nishiyama, H. J. Org. Chem. 2012, 77, 10914–10919.
    140. Curti, C.; Ranieri, B.; Battistini, L.; Rassu, G.; Zambrano, V.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Adv. Synth. Catal. 2010, 352, 2011–2022.
    141. Gupton, J. T.; Clough, S. C.; Miller, R. B.; Lukens, J. R.; Henry, C. A.; Kanters, R. P. F.; Sikorski, J. A. Tetrahedron 2003, 59, 207–215.
    142. Bachmann, W. E.; Thomas, D. G. J. Am. Chem. Soc. 1942, 64, 94–97.
    143. Shahane, S.; Louafi, F.; Moreau, J.; Hurvois, J.-P.; Renaud, J.-L.; van de Weghe, P.; Roisnel, T. Eur. J. Org. Chem. 2008, 4622–4631.
    144. Bronson, J. J.; Ghazzouli, I.; Hitchcock, M. J. M.; WebbII, R. R.; Martin, J. C. J. Med. Chem. 1989, 32, 1457–1463.
    145. Zhao, B.; Loh, T.-P. Org. Lett. 2013, 15, 2914–2917.
    146. Srinivas, K. V. N. S.; Das, B. J. Org. Chem. 2003, 68, 1165–1167.
    147. Yamamoto, Y.; Maruyama, K.; Komatsu, T.; Ito, W. J. Org. Chem. 1986, 51, 886–891.
    148. (a) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152–1155. (b) Chen, W.-L.; Li, J.-H.; Meng, X.; Tang, D.; Guo, S.-B.; Chen, B.-H. Tetrahedron Lett. 2013, 54, 295–299.
    149. Zhao, M.-M.; Li, W.-F.; Ma, X.; Fan, W.-Z.; Tao, X.-M.; Li, X.-M.; Xie, X.-M.; Zhang, Z.-G. Sci. China Chem. 2013, 56, 342–348.
    150. (a) Taniguchi, T.; Yajima, A.; Ishibashi, H. Adv. Synth. Catal. 2011, 353, 2643–2647. (b) Du, D.-M.; Lu, S.-F.; Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712–3715.
    151. (a) Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85–92. (b) Cristau, H. J.; Taillefer, M. Tetrahedron 1998, 54, 1507–1522. (c) Concellon, J. M.; Rodriguez-Solla, H.; Mejica, C. Tetrahedron 2006, 62, 3292–3300. (d) Schoenleber, M.; Hilgraf, R.; Pfaltz, A. Adv. Synth. Catal. 2008, 350, 2033–2038. (e) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080–19083. (f) Jiang, T.; Huynh, K.; Livinghouse, T. Synlett 2013, 193–196. (g) Shouksmith, A. E.; Evans, L. E.; Tweddle, D. A.; Miller, D. C.; Willmore, E.; Newell, D. R.; Golding, B. T.; Griffin, R. J. Aust. J. Chem. 2015, 68, 660–679. (h) Shyam, P. K.; Lee, C.; Jang, H.-Y. Bull. Korean Chem. Soc. 2015, 36, 1824–1827. Liu, J.; Liu, Q.; Franke, R.; Jackstell, R.; Beller, M. J. Am. Chem. Soc. 2015, 137, 8556–8563. (i) Zhao, W.; Xu, L.; Ding, Y.; Niu, B.; Xie, P.; Bian, Z.; Zhang, D.; Zhou, A. Eur. J. Org. Chem. 2016, 325–330.
    152. Yamada, K.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem. Int. Ed. 1999, 38, 3504–3506; Angew. Chem. 1999, 111, 3713–3715.
    153. Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561–5568.
    154. (a) Puri, S.; Thirupathi, N.; Reddy, M. S. Org. Lett. 2014, 16, 5246–5249. (b) Dudley, G. B.; Takaki, K. S.; Cha, D. D.; Danheiser, R. L. Org. Lett. 2000, 2, 3407–3410.
    155. Hashmi, A. S. K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J. W.; Hamzic, M. Angew. Chem. Int. Ed. 2009, 48, 5848–5852.
    156. Graf, K.; Rühl, C. L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727–12731.
    157. Barcan, G. A.; Patel, A.; Houk, K. N.; Kwon, O. Org. Lett. 2012, 14, 5388–5391.
    158. Molander, G. A.; Yun, C.-S.; Ribagorda, M.; Biolatto, B. J. Org. Chem. 2003, 68, 5534–5539.

    無法下載圖示 本全文未授權公開
    QR CODE