研究生: |
陳希 Chen, Hsi |
---|---|
論文名稱: |
人類活動對臺灣地區石虎食性之影響 Anthropogenic influences on the diets of the leopard cat Prionailurus bengalensis in Taiwan |
指導教授: |
李佩珍
Pei-Jen Lee Shaner |
口試委員: |
李佩珍
Lee, Pei-Jen Shaner 張仕緯 Chang, Shih-Wei 顏士清 Yen, Shih-Ching |
口試日期: | 2025/01/09 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 亞洲豹貓 、掠食者 、食肉目動物 、排遺內含物形態分析 、穩定同位素 、食性 、人為干擾 、都市化 |
英文關鍵詞: | leopard cat, predator, carnivore, scat analysis, stable isotope, food habit, anthropogenic impact, urbanization |
研究方法: | 調查研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202500370 |
論文種類: | 學術論文 |
相關次數: | 點閱:79 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對全球頂級掠食者(apex predators)族群持續下降的趨勢,中階掠食者(mesocarnivores)所能扮演的生態功能日益受到關注。石虎(Prionailurus bengalensis)作為臺灣淺山生態系中少數以脊椎動物為主食的中階掠食者,其覓食行為不僅影響自身的生存,也可能透過複雜的食物網進而影響許多其他物種以及生態系過程。因為棲地喪失、破碎化和獵捕,臺灣的石虎分佈已大規模限縮至中部地區,根據臺灣野生動物保育法被列為瀕臨絕種之保育類野生動物,若其族群能恢復並擴張分佈至更多淺山地區,牠們可能發揮重要的掠食者生態功能。本研究結合排遺內含物形態分析和碳氮穩定同位素分析(排遺樣本67個、毛髮樣本46個),並且利用貝氏混合模型以掠食者和獵物在碳氮空間上的距離估算各食物來源的貢獻度,以了解臺灣地區石虎食性組成及其如何受人類活動的影響而變化。結果顯示,石虎食性頗寬,反應其機會主義式的覓食行為或食物資源的不穩定性。排遺形態分析顯示,在五大類獵物類群中(哺乳類、鳥類、爬蟲類、節肢動物、魚類),84% 的樣本含有至少兩大類之獵物。排遺與毛髮同位素分析則顯示,兩棲爬蟲類與節肢動物、哺乳類與鳥類此兩類獵物群對石虎食性的貢獻度相似,構成其主要食性,然根據毛髮同位素值,人類食物對石虎食性亦有約 30.2% 的貢獻度。與過去以排遺形態分析為主的研究結果相似,本研究排遺形態分析亦顯示哺乳類動物,特別是鼠科動物,是石虎重要的獵物之一,然綜合同位素分析結果可知,節肢動物和爬蟲類亦為石虎重要的獵物,這是單用排遺形態分析容易忽略的訊息。整體來說,石虎佔據當地食物網較高的營養位階,接近人類(當地居民)的營養位階。隨著人類活動(以農地覆蓋度表示)的增加,石虎排遺中出現人造物的機率升高,排遺和毛髮的碳氮同位素值也有上升趨勢,顯示石虎可能有取食人類食物的現象。排遺形態分析和排遺同位素分析所得的食性資訊存在一定差異,兩種方法的結果併同使用可更完整地呈現野生動物的食性。本研究揭示了人類活動對臺灣石虎食性的影響,而這些改變是否對石虎的生存和族群健康有影響,則有待進一步探討。
The global decline of apex predators has led to a growing interest in the ecological functions of mesocarnivores as a way to compensate for the loss of apex predators. In the suburban hills of Taiwan, the leopard cat (Prionailurus bengalensis) is an important mesocarnivore that primarily feed on vertebrates, whose foraging behavior not only influences its own survival, but can also affect many other species and ecosystem processes complex food-web interactions. Due to habitat loss, fragmentation, and hunting, the geographic distribution of leopard cats in Taiwan has been largely restricted to the central region. As a result, the leopard cat is currently listed as ‘endangered’ according to Taiwan’s Wildlife Conservation Act. If their populations recover and expand into more low-altitude areas, leopard cats could potentially fulfill important ecological roles as predators. This study combined scat content morphological analysis and stable isotope analysis of carbon and nitrogen (using 67 scat samples and 46 fur samples). A Bayesian mixing model was used to estimate the contribution of each food source based on the distance between predators and prey on carbon-nitrogen isospace. These approaches aimed to understand the dietary composition of leopard cats in Taiwan and how it is influenced by human activities. The results showed that leopard cats have a rather broad diet with considerable variation in prey composition, reflecting opportunistic foraging behavior or instability in their food resources. Morphological scat analysis showed that 84% of samples included prey from at least two of the five major prey groups (mammals, birds, reptiles, arthropods, and fish). Both scat and hair isotope analyses indicated that reptiles and arthropods, as well as mammals and birds, contribute similarly to their diet, together forming their main dietary components. Interestingly, based on hair isotope values, human-derived food sources also contributed approximately 30.2% to their diet. Similar to previous studies based mostly on morphological scat analysis, we confirmed that mammals, especially rodents, are key prey for leopard cats. However, integrating the results of isotope analysis, we also uncovered the importance of arthropods and reptiles, which would have been easy to miss if we relied on scat morphology alone. Overall, leopard cats occupy a relatively high trophic position in the local food web, comparable to that of local human residents. With increased human activity (measured by the proportion of cultivated and managed vegetation area), the frequency of occurrence of artificial items in scats increased , and the carbon and nitrogen isotope values of both scat and hair showed an increasing trend. These findings suggest that leopard cats may be incorporating human-related food sources into their diet. While analyses of scat morphology and isotope composition each provide dietary insights, the differences between them highlight the value of using both methods to gain a more comprehensive understanding of wildlife feeding habits. This study reveals the influence of human activities on the diet of leopard cats in Taiwan, yet further research is needed to determine whether these dietary changes impact their long-term survival and population health.
吳銘志(2017)。應用穩定同位素建立台灣本土牛乳產源特性鑑識指標(計劃編號:MOST104-2622-B006-017-CC2)。行政院科技部。
吳銘志(2018)。新穎科技於食品之應用:(1)履歷檢驗方法的開發- 臺灣經濟農產品產源特性鑑識指標與檢測技術開發與應用(計劃編號:MOST 106-3114-B-006-001)。行政院科技部。
林良恭(2009)。保育類哺乳動物生息現況分析與生態資訊建置(計畫編號:行政院農業委員會林務局保育研究系列 97-03 號)。行政院農業委員會林務局。https://conservation.forest.gov.tw/0001142
林良恭(2017)。重要石虎棲地保育評析(2/2)(計劃編號:行政院農業委員會林務局保育研究105-30號)。行政院農業委員會林務局南投林區管理處。
姜博仁(2019)。苗栗縣大尺度之路殺風險評估暨縣道140 改善建議分析。行政院農業委員會林務局。
陳美汀(2015)。台灣淺山地區石虎(Prionailurus bengalensis)的空間生態學(博士論文)。國立屏東科技大學。
陳宣儀(2016)。使用穩定碳、氮同位素判別白肉雞棒腿產地來源(碩士論文)。國立中興大學。
張偉廷(2018)。北臺灣食肉目群聚食性變異研究(碩士論文)。國立臺灣師範大學。
莊琬琪(2012)。苗栗通霄地區石虎(Prionailurus bengalensis chinensis)及家貓(Felis catus)之食性分析(碩士論文)。國立屏東科技大學。
裴家騏(2008)。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究 (3/3)(計劃編號:行政院農業委員會林務局保育研究系列 96-01 號)。行政院農業委員會林務局。
劉建男、林育秀(2023)。2023年石虎保育行動計畫。行政院農業委員會林務局、行政院農業委員會特有生物研究保育中心。
劉建男(2016)。南投地區石虎族群調查及保育之研究委託計畫(2/2)(計劃編號:行政院農業委員會林務局保育研究103-05 號)。行政院農業委員會林務局南投林區管理處。
鄭錫奇、張簡琳玟、林瑞興、楊正雄、張仕緯(2017)。2017 臺灣陸域哺乳類紅皮書名錄。行政院農業委員會特有生物研究保育中心。
鮑偉東、李曉京、史陽(2005)。北京市三個區域食肉類動物食性的比較分析(Comparative analysis of food habits in carnivores from three areas of Beijing.)。Zoological Research,26(2),118–122。
農業部林業及自然保育署(2024)。陸域保育類野生動物名錄。行政院農業部林業及自然保育署。
AOAC. (2013). C-4 plant sugars in honey. AOAC Official Method 998.12. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=49
Avrin, A. C., Pekins, C. E., Wilmers, C. C., Sperry, J. H., & Allen, M. L. (2023). Can a mesocarnivore fill the functional role of an apex predator? Ecosphere, 14(1), e4383. https://doi.org/10.1002/ecs2.4383
Bashir, T., Bhattacharya, T., Poudyal, K., Sathyakumar, S., & Qureshi, Q. (2014). Integrating aspects of ecology and predictive modelling: implications for the conservation of the leopard cat (Prionailurus bengalensis) in the Eastern Himalaya. Acta Theriologica, 59(1), 35-47. https://doi.org/10.1007/s13364-013-0145-x
Ben-David, M., Blundell, G. M., Kern, J. W., Maier, J. A. K., Brown, E. D., & Jewett, S. C. (2005). Communication in river otters: creation of variable resource sheds for terrestrial communities. Ecology, 86(5), 1331-1345. https://doi.org/10.1890/04-0783
Ben-David, M., & Flaherty, E. A. (2012). Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammalogy, 93(2), 312-328. https://doi.org/10.1644/11-MAMM-S-166.1
Beschta, R. L., & Ripple, W. J. (2016). Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biological Conservation, 198, 93–103. https://doi.org/10.1016/j.biocon.2016.03.031
Blumenthal, S. A., Chritz, K. L., Rothman, J. M., & Cerling, T. E. (2012). Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces. Proceedings of the National Academy of Sciences, 109(52), 21277–21282. https://doi.org/10.1073/pnas.1215782109
Bonin, M., Dussault, C., Taillon, J., Lecomte, N., & Côté, S. D. (2020). Combining stable isotopes, morphological, and molecular analyses to reconstruct the diet of free‐ranging consumers. Ecology and Evolution, 10(13), 6664-6676. https://doi.org/10.1002/ece3.6397
Bump, J. K., Peterson, R. O., & Vucetich, J. A. (2009). Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology, 90(11), 3159-3167. https://doi.org/10.1890/09-0292.1
Cancio, I., González-Robles, A., Bastida, J. M., Isla, J., Manzaneda, A. J., Salido, T., & Rey, P. J. (2017). Landscape degradation affects red fox (Vulpes vulpes) diet and its ecosystem services in the threatened Ziziphus lotus scrubland habitats of semiarid Spain. Journal of Arid Environments, 145, 24–34. https://doi.org/10.1016/j.jaridenv.2017.05.004
Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5(2), e22. https://doi.org/10.1371/journal.pbio.0050022
Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (Δ15 N and Δ13 C): The effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46(2), 443–453. https://doi.org/10.1111/j.1365-2664.2009.01620.x
Chen, M. T., Liang, Y. J., Kuo, C. C., & Pei, K. J. C. (2016). Home Ranges, movements and activity patterns of leopard cats (Prionailurus bengalensis) and threats to them in Taiwan. Mammal Study, 41(2), 77-86. https://doi.org/10.3106/041.041.0205
Chuang, S., & Lee, L. (1997). Food habits of three carnivore species (Viverricula indica, Herpestes urva , and Melogale moschata in Fushan Forest, northern Taiwan. Journal of Zoology, 243(1), 71–79. https://doi.org/10.1111/j.1469-7998.1997.tb05757.x
Codron, J., Codron, D., Lee-Thorp, J.A., Sponheimer, M., & De Ruiter, D. (2005). Animal diets in the Waterberg based on stable isotopic composition of faeces: Research article. South African Journal of Wildlife Research, 35(1), 43–52.
Crait, J. R., & Ben-David, M. (2007). Effects of river otter activity on terrestrial plants in trophically altered Yellowstone lake. Ecology, 88(4), 1040-1052. https://doi.org/10.1890/06-0078
Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M., & Byrd, G. V. (2005). Introduced predators transform subarctic islands from grassland to tundra. Science, 307(5717), 1959-1961. https://doi.org/10.1126/science.1108485
Delibes-Mateos, M., Fernandez De Simon, J., Villafuerte, R., & Ferreras, P. (2008). Feeding responses of the red fox (Vulpes vulpes) to different wild rabbit (Oryctolagus cuniculus) densities: A regional approach. European Journal of Wildlife Research, 54(1), 71–78. https://doi.org/10.1007/s10344-007-0111-5
Demeny, K., McLoon, M., Winesett, B., Fastner, J., Hammerer, E., & Pauli, J. N. (2019). Food subsidies of raccoons (Procyon lotor) in anthropogenic landscapes. Canadian Journal of Zoology, 97(7), 654–657. https://doi.org/10.1139/cjz-2018-0286
Deniro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341-351. https://doi.org/10.1016/0016-7037(81)90244-1
Eberhardt, L. L., White, P. J., Garrott, R. A., & Houston, D. B. (2007). A seventy‐year history of trends in Yellowstone’s northern elk herd. The Journal of Wildlife Management, 71(2), 594–602. https://doi.org/10.2193/2005-770
Estes, J. A., & Duggins, D. O. (1995). Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecological Monographs, 65(1), 75-100. https://doi.org/10.2307/2937159
Fry, B. (2006). Stable isotope ecology. Springer.
Ghimirey, Y., Petersen, W., Jahed, N., Akash, M., Lynam, A. J., Kun, S., Din, J., Nawaz, M. A., Singh, P., Dhendup, T., Chua, M. A. H., Gray, T. N. E., & Phyoe Kyaw, P. (2023). Prionailurus bengalensis (amended version of 2022 assessment). The IUCN Red List of Threatened Species 2023. https://www.iucnredlist.org/species/223138747/226150742
Grassman, L. I., Tewes, M. E., Silvy, N. J., & Kreetiyutanont, K. (2005). Spatial organization and diet of the leopard cat ( Prionailurus bengalensis ) in north‐central Thailand. Journal of Zoology, 266(1), 45-54. https://doi.org/10.1017/S095283690500659X
Griffith, D. M., Veech, J. A., & Marsh, C. J. (2016). Cooccur: Probabilistic species co-occurrence analysis in R. Journal of Statistical Software, 69(2). https://doi.org/10.18637/jss.v069.c02
Hambäck, P. A., Oksanen, L., Ekerholm, P., Lindgren, Å., Oksanen, T., & Schneider, M. (2004). Predators indirectly protect tundra plants by reducing herbivore abundance. Oikos, 106(1), 85-92. https://doi.org/10.1111/j.0030-1299.2004.13029.x
Handler, A. M., Lonsdorf, E. V., & Ardia, D. R. (2020). Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Canadian Journal of Zoology, 98(2), 79-87. https://doi.org/10.1139/cjz-2019-0004
Hatch, K. A., Roeder, B. L., Buckman, R. S., Gale, B. H., Bunnell, S. T., Eggett, D. L., Auger, J., Felicetti, L. A., & Hilderbrand, G. V. (2011). Isotopic and gross fecal analysis of American black bear scats. Ursus, 22(2), 133–140. https://doi.org/10.2192/URSUS-D-10-00034.1
Henden, J., Ehrich, D., Soininen, E. M., & Ims, R. A. (2021). Accounting for food web dynamics when assessing the impact of mesopredator control on declining prey populations. Journal of Applied Ecology, 58(1), 104-113. https://doi.org/10.1111/1365-2664.13793
Hope, A. G., Gragg, S. F., Nippert, J. B., & Combe, F. J. (2021). Consumer roles of small mammals within fragmented native tallgrass prairie. Ecosphere, 12(3), e03441. https://doi.org/10.1002/ecs2.3441
Horswill, C., Jackson, J. A., Medeiros, R., Nowell, R. W., Trathan, P. N., & O’Connell, T. C. (2018). Minimising the limitations of using dietary analysis to assess foodweb changes by combining multiple techniques. Ecological Indicators, 94, 218-225. https://doi.org/10.1016/j.ecolind.2018.06.035
Jahren, A. H., & Kraft, R. A. (2008). Carbon and nitrogen stable isotopes in fast food: Signatures of corn and confinement. Proceedings of the National Academy of Sciences, 105(46), 17855-17860. https://doi.org/10.1073/pnas.0809870105
Kano, T. (1930). The distribution and habit of mammals of Formosa (2). Zoological Magazine, 42, 165-173.
Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 78(1), 1-27. https://doi.org/10.1139/z99-165
Khan, M. M. H. (2004). Food habit of the leopard cat Prionailurus bengalensis (Kerr, 1792) in the Sundarbans East wildlife sanctuary, Bangladesh. Zoos’ Print Journal, 19(5), 1475-1476.
Klare, U., Kamler, J. F., & Macdonald, D. W. (2011). A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Review, 41(4), 294-312. https://doi.org/10.1111/j.1365-2907.2011.00183.x
Larson, R. N., Brown, J. L., Karels, T., & Riley, S. P. D. (2020). Effects of urbanization on resource use and individual specialization in coyotes (Canis latrans) in southern California. PLOS ONE, 15(2), e0228881. https://doi.org/10.1371/journal.pone.0228881
Lee, O., Lee, S., Nam, D. H., & Lee, H. Y. (2013). Molecular analysis for investigating dietary habits: genetic screening of prey items in scat and stomach contents of leopard cats Prionailurus bengalensis euptilurus. Zoological Studies, 52(1), 45. https://doi.org/10.1186/1810-522X-52-45
Lee, O., Lee, S., Nam, D. H., & Lee, H. Y. (2014). Food habits of the leopard cat (Prionailurus bengalensis euptilurus) in Korea. Mammal Study, 39(1), 43-46. https://doi.org/10.3106/041.039.0107
Lin, C., Tai, Y., Liu, D., & Ku, M. (1993). Photosynthetic mechanisms of weeds in Taiwan. Functional Plant Biology, 20(6), 757. https://doi.org/10.1071/PP9930757
McInnes, P. F., Naiman, R. J., Pastor, J., & Cohen, Y. (1992). Effects of moose browsing on vegetation and litter of the boreal forest, isle royale, Michigan, USA. Ecology, 73(6), 2059–2075. https://doi.org/10.2307/1941455
McMinn, R. (1954). The rate of renewal of intestinal epithelium in the cat. Journal of Anatomy, 88(4), 527.
Murray, M., Cembrowski, A., Latham, A. D. M., Lukasik, V. M., Pruss, S., & St Clair, C. C. (2015). Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography, 38(12), 1235–1242. https://doi.org/10/f78bgg
Newsome, S. D., Ralls, K., Job, C. V. H., Fogel, M. L., & Cypher, B. L. (2010). Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). Journal of Mammalogy, 91(6), 1313–1321. https://doi.org/10.1644/09-MAMM-A-362.1
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P. (2018). Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution, 9(2), 278-291. https://doi.org/10.1111/2041-210X.12869
O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. BioScience, 38(5), 328-336. https://doi.org/10.2307/1310735
Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18(1), 293–320. https://doi.org/10.1146/annurev.es.18.110187.001453
Peterson, R. O. (1999). Wolf–moose interaction on isle royale: The end of natural regulation? Ecological Applications, 9(1), 10–16. https://doi.org/10.1890/1051-0761(1999)009[0010:WMIOIR]2.0.CO;2
Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semmens, B. X., & Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127
Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21(8), 1931-1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x
Putman, R. J. (1984). Facts from faeces. Mammal Review, 14(2), 79-97. https://doi.org/10.1111/j.1365-2907.1984.tb00341.x
R Core Team. (2022). R: A language and environment for statistical computing (manual). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rajaratnam, R., Sunquist, M., Rajaratnam, L., & Ambu, L. (2007). Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. Journal of Tropical Ecology, 23(2), 209-217. https://doi.org/10.1017/S0266467406003841
Reid, R. E. B., Crowley, B. E., & Haupt, R. J. (2023). The prospects of poop: A review of past achievements and future possibilities in faecal isotope analysis. Biological Reviews, 98(6), 2091–2113. https://doi.org/10.1111/brv.12996
Reid, R. E. B., & Koch, P. L. (2017). Isotopic ecology of coyotes from scat and road kill carcasses: A complementary approach to feeding experiments. PLOS ONE, 12(4), e0174897. https://doi.org/10.1371/journal.pone.0174897
Reisewitz, S. E., Estes, J. A., & Simenstad, C. A. (2006). Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago. Oecologia, 146(4), 623-631. https://doi.org/10.1007/s00442-005-0230-1
Reynolds, J. C., & Aebischer, N. J. (1991). Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the Fox Vulpes vulpes. Mammal Review, 21(3), 97-122. https://doi.org/10.1111/j.1365-2907.1991.tb00113.x
Robertson, I. (1998). Survey of predation by domestic cats. Australian Veterinary Journal, 76(8), 551–554. https://doi.org/10.1111/j.1751-0813.1998.tb10214.x
Roemer, G. W., Donlan, C. J., & Courchamp, F. (2002). Golden eagles, feral pigs, and insular carnivores: How exotic species turn native predators into prey. Proceedings of the National Academy of Sciences, 99(2), 791–796. https://doi.org/10.1073/pnas.012422499
Roemer, G. W., Gompper, M. E., & Van Valkenburgh, B. (2009). The ecological role of the mammalian mesocarnivore. BioScience, 59(2), 165–173. https://doi.org/10.1525/bio.2009.59.2.9
Scholz, C., Firozpoor, J., Kramer‐Schadt, S., Gras, P., Schulze, C., Kimmig, S. E., Voigt, C. C., & Ortmann, S. (2020). Individual dietary specialization in a generalist predator: A stable isotope analysis of urban and rural red foxes. Ecology and Evolution, 10(16), 8855–8870. https://doi.org/10.1002/ece3.6584
Shehzad, W., Riaz, T., Nawaz, M. A., Miquel, C., Poillot, C., Shah, S. A., Pompanon, F., Coissac, E., & Taberlet, P. (2012). Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular Ecology, 21(8), 1951-1965. https://doi.org/10.1111/j.1365-294X.2011.05424.x
Stephens, R. B., Shipley, O. N., & Moll, R. J. (2023). Meta‐analysis and critical review of trophic discrimination factors (Δ13C and Δ15N): Importance of tissue, trophic level and diet source. Functional Ecology, 37(9), 2535–2548. https://doi.org/10.1111/1365-2435.14403
Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., & Semmens, B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. https://doi.org/10.7717/peerj.5096
Tuanmu, M., & Jetz, W. (2014). A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23(9), 1031–1045. https://doi.org/10.1111/geb.12182
van der Meer, E., Dullemont, H., Wang, C.-H., Zhang, J.-W., Lin, J.-L., Pei, K. J.-C., & Lai, Y.-C. (2023). Fine-scaled selection of resting and hunting habitat by leopard cats (Prionailurus bengalensis) in a rural human-dominated landscape in Taiwan. Animals, 13(2), 234. https://doi.org/10.3390/ani13020234
Veech, J. A. (2013). A probabilistic model for analysing species co‐occurrence. Global Ecology and Biogeography, 22(2), 252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x
Wallach, A. D., Izhaki, I., Toms, J. D., Ripple, W. J., & Shanas, U. (2015). What is an apex predator? Oikos, 124(11), 1453–1461. https://doi.org/10.1111/oik.01977
Watanabe, S. (2009). Factors affecting the distribution of the leopard cat Prionailurus bengalensis on east Asian islands. Mammal Study, 34(4), 201-207. https://doi.org/10.3106/041.034.0404
Watanabe, S., Nakanishi, N., & Izawa, M. (2003). Habitat and prey resource overlap between the Iriomote cat Prionailurus iriomotensis and introduced feral cat Felis catus based on assessment of scat content and distribution. Mammal Study, 28(1), 47-56. https://doi.org/10.3106/mammalstudy.28.47
Xiong, M., Wang, D., Bu, H., Shao, X., Zhang, D., Li, S., Wang, R., & Yao, M. (2017). Molecular dietary analysis of two sympatric felids in the mountains of Southwest China biodiversity hotspot and conservation implications. Scientific Reports, 7(1), 41909. https://doi.org/10.1038/srep41909