簡易檢索 / 詳目顯示

研究生: 劉家芸
Liou, Chia-Yun
論文名稱: 支鏈胺基酸增補對單次運動後記憶力、注意力與腦氧含量之影響
Contribution of Branched-Chain Amino Acids to Cerebral Functions of Memory and Attention, and Oxygenation after a Bout of Exercise
指導教授: 湯馥君
Tang, Fu-Chun
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 血清素5-羥基引朵醋酸中樞疲勞前額葉氧合作用認知表現
英文關鍵詞: serotonin, 5-hydroxyindoleacetic acid, central fatigue, prefrontal cortex oxygenation, cognitive performance
DOI URL: https://doi.org/10.6345/NTNU202203343
論文種類: 學術論文
相關次數: 點閱:259下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討一次高劑量支鏈胺基酸增補對耐力運動後生理、生化代謝之影響,及支鏈胺基酸、中樞疲勞、腦血氧含量與認知學習記憶力、注意力之關聯。
    本雙盲研究召募大學體育系之健康男生20人 (22 ± 2歲) 計數平衡後,分成二組:控制組 (安慰劑組, 麥芽糊精40克/次) 10名、實驗組 (支鏈胺基酸組, 支鏈胺基酸 40克/次;白胺酸54%, 異白胺酸19%, 纈胺酸27%) 10名,交叉前、後各僅增補1次,增補當日進行1小時之耐力跑步,運動強度70~75% 最大保留心跳率。增補前、後與運動前、後均採血與取尿,以測量血液生化值:葡萄糖、乳酸、胺基酸、血清素與肌酸激酶濃度;及收集尿液參數:比重、吸光值、酸鹼值、肌酸酐、尿素氮與5-羥基引朵醋酸濃度。並以近紅外線光譜儀與認知測驗 (工作記憶力、選擇注意力與分散注意力測驗),探討支鏈胺基酸增補與耐力運動對腦部前額葉血氧飽和變化與認知學習記憶力與注意力之影響。
    統計分析後,研究結果發現支鏈胺基酸增補可維持耐力運動後恢復期血漿葡萄糖、麩醯胺酸、丙胺酸、纈胺酸、白胺酸、支鏈胺基酸與總受測胺基酸濃度,並利於維持體內氮之平衡。相較於無支鏈胺基酸增補者,支鏈胺基酸增補降低血漿游離色胺酸與支鏈胺基酸比值 (p < .05),降低運動後血清血清素 (p < .05) 和尿液5-羥基引朵醋酸 (p < .05) 濃度,且增加運動後恢復期選擇注意力和分散注意力測驗執行時,前額葉含氧血紅素和總血紅素之百分變化率 (p < .05),同時也提升選擇注意力之表現。相較於支鏈胺基酸增補者,麥芽糊精增補提升運動前工作記憶力之表現 (p < .05),於運動後之恢復期也提升組內分散注意力之表現 (p < .05)。
    綜上所述,支鏈胺基酸增補有助於減少中樞疲勞的傾向,且有利於認知測驗執行時,腦血流量與血氧運送,提升了選擇注意力之表現。

    To investigate the influences of acute branched-chain amino acid (BCAA) supplementation and endurance exercise on amino acid metabolism, cerebral functions of memory and attention, and prefrontal cortex oxygenation, a double-blind, counter-balanced, and cross-over study was undertaken. Twenty healthy male athletes (22 ± 2 y) were recruited and divided into two groups: placebo group (n = 10, maltodextrin 40 g/bout) and BCAAs group (n = 10, BCAAs 40 g/bout; leucine 54%, isoleucine 19%, valine 27%). On the testing day, the participants performed 1 hour running with an intensity of 70~75% heart rate reserved maximum. Blood and urine samples were collected before and after both the supplementation and endurance running. Blood concentrations of glucose, lactate, selective amino acids, 5-hydroxytryptamine (5-HT) and creatine kinase were measured. In addition to urinary specific gravity, absorbance and pH value, urinary concentrations of creatinine, urea nitrogen and 5-hydroxyindoleacetic acid (5-HIAA) were also determined. Cognitive tests (working memory, selective attention and divided attention) and functional Near-Infrared Spectroscopy were employed to understand the effects of BCAA supplements and endurance exercise on cerebral functions of memory and attention, and oxygenation.
    After statistical analysis, the plasma homeostasis of glucose, glutamine, alanine, valine, leucine, BCAAs and total selective amino acid concentrations were maintained with BCAA supplement, and also the nitrogen metabolism of the body at recovery. Compared with the placebo group, BCAA supplement reduced the ratio of f-tryptophan (f-TRP)/BCAAs (p < .05), the concentrations of serum 5-HT (p < .05), and urinary 5-HIAA (p < .05) after endurance running. It also increased oxygenation of the prefrontal cortex during the selective attention and divided attention tests at recovery (p < .05), along with a significant performance improvement on the selective attention test. Maltodextrin supplement improved the performance on the working memory test before running (p < .05), and enhanced the performance on the divided attention test at recovery (p < .05).
    Branched-chain amino acid supplementation tended to reduce central fatigue, and increase cerebral blood flow and blood oxygen delivery during cognitive tests, which enhanced the performance on the selective attention test after a bout of exercise.

    中文摘要i 英文摘要iv 誌謝v 目次vi 圖次xi 表次xiii 第一章 緒論1 第一節 研究動機1 第二節 研究目的2 第三節 名詞定義3 第二章 文獻探討4 第一節 支鏈胺基酸代謝4 第二節 支鏈胺基酸增補與運動6 一、支鏈胺基酸增補與運動生理6 二、支鏈胺基酸增補與肌肉損傷7 第三節 支鏈胺基酸增補與中樞疲勞8 一、血清素之生合成與代謝8 二、中樞疲勞假說10 第四節 前額葉血氧飽和變化與認知學習13 一、近紅外線光譜與前額葉血氧飽和變化13 二、運動與認知功能14 三、營養增補與認知功能14 第五節 文獻探討總結15 第三章 研究方法17 第一節 研究流程17 第二節 研究對象18 第三節 研究設計與流程18 一、實驗地點18 二、實驗設計18 三、實驗流程19 四、實驗飲食19 第四節 研究工具及方法21 一、資料收集與測量方法21 (一) 基本資料21 (二) 問卷調查21 (三) 近紅外線光譜儀前額葉血氧飽和變化之測定22 (四) 認知測驗24 (五) 心跳測量26 (六) 檢體收集26 (七) 血球容積比26 二、檢體生化分析27 (一) 血液27 (二) 尿液32 第五節 統計分析36 第四章 研究結果37 第一節 支鏈胺基酸增補與耐力運動37 一、描述性統計資料37 二、飲食攝取狀況37 三、運動引致感覺變化38 四、血液生化分析40 (一) 血漿葡萄糖40 (二) 血漿乳酸41 (三) 血漿胺基酸42 (四) 血清肌酸激酶46 五、中樞疲勞相關之生化值47 (一) 血漿游離色胺酸與支鏈胺基酸比值47 (二) 血清血清素47 (三) 尿液5-羥基引朵醋酸47 六、尿液參數分析49 (一) 尿液比重49 (二) 尿液吸光值49 (三) 尿液酸鹼值49 (四) 尿液尿素氮49 第二節、支鏈胺基酸增補與認知測驗執行時前額葉血氧飽和百分變化率51 第三節、支鏈胺基酸增補與認知測驗表現55 一、測驗作答正確率之分析55 二、測驗作答反應時間之分析55 第四節、相關分析58 一、支鏈胺基酸增補與耐力運動對生化值與尿液參數影響之相關分析58 二、支鏈胺基酸增補與耐力運動對生化值與選擇注意力測驗執行時前額葉含氧血紅素百分變化率之相關分析59 三、支鏈胺基酸增補與耐力運動對生化值與認知測驗表現之相關分析--60 第五章 討論61 第一節、支鏈胺基酸增補與耐力運動61 一、運動引致感覺變化與肌肉損傷61 二、血液生化分析62 (一)血漿葡萄糖62 (二)血漿乳酸62 (三)血漿胺基酸63 (四)中樞疲勞相關生化值64 三、尿液參數分析64 第二節、前額葉血氧飽和百分變化率與認知測驗表現66 第三節 相關性探討67 一、生化值之相關分析與尿液參數之相關分析67 二、生化值與執行選擇注意力測驗時的前額葉含氧血紅素百分變化率之相關分析68 三、生化值與認知測驗表現之相關分析69 第六章 結論與建議70 第一節 結論70 一、支鏈胺基酸增補與耐力運動對生化值變化之影響70 二、支鏈胺基酸增補與耐力運動對前額葉血氧百分變化率及認知表現之影響70 第二節 建議71 參考文獻72 附錄1、三軍總醫院人體試驗審議會人體試驗計畫同意函86 附錄2、飲食、運動與生活習慣問卷91 附錄3、運動引致感覺量表95 附錄4、受試者之運動專長96 附錄5.1、三項認知測驗執行時前額葉含氧血紅素飽和變化之統計資料97 附錄5.2、三項認知測驗執行時前額葉去氧血紅素飽和變化之統計資料98 附錄5.3、三項認知測驗執行時前額葉總血紅素飽和變化之統計資料99

    一、中文部分
    衛生福利部 (前行政院衛生署) (1988)。台灣常見食品營養圖鑑。
    黃伯超、游素玲 (1991)。營養學精要。臺北:健康文化事業股份有限公司。
    侯振建、岳春、王可 (2002)。焦糖色素色率测定新方法研究。中國食品科學,分析檢驗,Vol. 23 (11): 112-115。
    林芷筠 (2010)。支鏈胺基酸與肌酸增補對耐力運動與瞬發力運動之貢獻。臺灣師範大學人類發展與家庭學系學位論文,第44頁。
    衛生福利部 (前行政院衛生署) (2011)。國人膳食營養素參考攝取量第七版。

    二、西文部分
    Ahveninen J, Kähkönen S, Pennanen S, Liesivuori J, Ilmoniemi RJ, Jääskeläinen IP. (2002). Tryptophan depletion effects on EEG and MEG responses suggest serotonergic modulation of auditory involuntary attention in humans. NeuroImage. 16(4):1052-1061.
    Aizenstein ML, Korf J. (1979). On the elimination of centrally formed 5-hydroxyindoleacetic acid by cerebrospinal fluid and urine. J Neurochem. 32(4):1227-1233.
    Ament W, Verkerke GJ. (2009). Exercise and fatigue. The American Journal of Sports Medicine. 39(5):389-422.
    Ando S, Kokubu M, Yamada Y, Kimura M. (2011). Does cerebral oxygenation affect cognitive function during exercise? Eur J Appl Physiol. 111(9):1973-1982.
    Areces F, Salinero JJ, Abian-Vicen J, González-Millán C, Gallo-Salazar C, Ruiz-Vicente D, Lara B, Del Coso J. (2014). A 7-day oral supplementation with branched-chain amino acids was ineffective to prevent muscle damage during a marathon. Amino Acids.. 46(5):1169-1176.
    Baddeley A. (1992). Working Memory: The Interface between Memory and Cognition. J Cogn Neurosci. 4(3):281-288. doi: 10.1162/jocn.1992.4.3.281.
    Baird MF, Graham SM, Baker JS, Bickerstaff GF. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012:960363. doi:10.1155/2012/960363.
    Banister EW, Cameron BJ. (1990). Exercise-induced hyperammonemia: peripheral and central effects. Int J Sports Med. 11 Suppl 2:S129-142.
    Beck L, Heusinger A, Boecker M, Niemann H, Gauggel S. (2008). Convergent and predictive validity of two computerized attention tests in brain-damaged patients. Zeitschrift für Neuropsychologie. 19:213-222. doi:10.1024/1016-264X.19.4.213.
    Becker M, Sturm W, Willmes K, Zimmermann P. (1996). Normierungsstudie zur aufmerksamkeitstestbatterie (tap) von zimmermann und fimm [a normative study on the attention test battery (tap) by zimmermann and fimm] Zeitschrift für Neuropsychologie. 7:3-15.
    Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, Cetinkaya C, Ozgoren M. (2016). Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload. Front Hum Neurosci. 10:174. doi: 10.3389/fnhum.2016.00174.
    Berger M, Gray JA, Roth BL. (2009). The expanded biology of serotonin. Annu Rev Med. 60:355-366. doi: 10.1146/annurev.med.60.042307.110802.
    Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A. 87(14):5568-5572.
    Block KP, Buse MG. (1990). Glucocorticoid regulation of muscle branched-chain amino acid metabolism. Med Sci Sports Exerc. 22(3):316-324.
    Blomstrand E. (2006). A role for branched-chain amino acids in reducing central fatigue. J Nutr. 136(2):544S-547S.
    Blomstrand E, Celsing F, Newsholme EA (1988). Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand. 133:115-121.
    Blomstrand E, Hassmén P, Ek S, Ekblom B, Newsholme EA. (1997). Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand. 159(1):41-49.
    Boden S, Obrig H, Köhncke C, Benav H, Koch SP, Steinbrink J. (2007). The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters? Neuroimage. 36(1):100-107.
    Booij L, Van der Does AJ, Haffmans PM, Riedel WJ, Fekkes D, Blom MJ. (2005). The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J Psychopharmacol. 19(3):267-275.
    Booij L, Van der Does AJ, Riedel WJ. (2003). Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry. 8(12):951-973.
    Brancaccio P, Maffulli N, Limongelli FM. (2007). Creatine kinase monitoring in sport medicine. Br Med Bull. (1):209-230.
    Brisswalter J, Collardeau M, René A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 32(9):555-566.
    Brun JF, Fedou C, Mercier J. (2000). Postprandial reactive hypoglycemia. Diabetes Metab. 26(5):337-351.
    Bühner M, Ziegler M, Bohnes B, Lauterbach K. (2006). Übungseffekte in den tap untertests go/nogo und geteilte aufmerksamkeit sowie dem aufmerksamkeits-belastungstest (d2). Zeitschrift für Neuropsychol. 17:191-199. doi:10.1024/1016-264X.17.3.191.
    Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, Dan I, Soya H. (2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage. 98:336-345. doi:10.1016/j.neuroimage.2014.04.067.
    Catale C, Marique P, Closset A, Meulemans T. (2009). Attentional and executive functioning following mild traumatic brain injury in children using the Test for Attentional Performance (TAP) battery. J Clin Exp Neuropsychol. 31(3):331-338. doi: 10.1080/13803390802134616.
    Chang CK, Chang Chien KM, Chang JH, Huang MH, Liang YC, Liu TH. (2015). Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PLoS One. 10(3):e0121866. doi: 10.1371/journal.pone.0121866.
    Chmura J, Nazar K, Kaciuba-Uściłko H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med. 15(4):172-176.
    Clarkson PM, Tremblay I. (1988). Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol (1985). 65(1):1-6.
    Corbetta M, Miezin FM, Dobmeyer S, Shulman LG, Petersen S.E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383-2402.
    Crowe MJ, Weatherson JN, Bowden BF. (2006). Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol. 97(6):664-672.
    Davis JM. (1995). Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. Int J Sport Nutr. 5 Suppl:S29-S38.
    Davis JM, Alderson NL, Welsh RS. (2000). Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr. 72(2 Suppl):573S-578S.
    de Araujo JA Jr, Falavigna G, Rogero MM, Pires IS, Pedrosa RG, Castro IA, Donato J Jr, Tirapegui J. (2006). Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats. Life Sci. 79(14):1343-1348.
    Endo K, Matsukawa K, Liang N, Nakatsuka C, Tsuchimochi H, Okamura H, Hamaoka T. (2013). Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. J Physiol Sci. 63(4):287-298. doi: 10.1007/s12576-013-0267-6.
    Eriksson LS, Broberg S, Björkman O, Wahren J. (1985). Ammonia metabolism during exercise in man. Clin Physiol. 5(4):325-336.
    Evers EA, Sambeth A, Ramaekers JG, Riedel WJ, van der Veen FM. (2010). The effects of acute tryptophan depletion on brain activation during cognition and emotional processing in healthy volunteers. Curr Pharm Des. 16(18):1998-2011.
    Feldman JM, Lee EM. (1985). Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr. 42(4):639-643.
    Fernstrom JD. (1979). Diet-induced changes in plasma amino acid pattern: effects on the brain uptake of large neutral amino acids, and on brain serotonin synthesis. J Neural Transm Suppl. (15):55-67.
    Fernstrom JD. (1983). Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev. 63(2):484-546.
    Gee TI, Deniel S. (2016). Branched-chain amino acid supplementation attenuates a decrease in power-producing ability following acute strength training. J Sports Med Phys Fitness. 56(12):1511-1517.
    Gessa GL, Biggio G, Fadda F, Corsini GU, Tagliamonte A. (1974). Effect of the oral administration of tryptophan-free amino acid mixtures on serum tryptophan, brain tryptophan and serotonin metabolism. J Neurochem. 22(5):869-870.
    Gibala MJ. (2007). Protein metabolism and endurance exercise. Sports Med. 37(4-5):337-340.
    Gijsman HJ, Scarnà A, Harmer CJ, McTavish SB, Odontiadis J, Cowen PJ, Goodwin GM. (2002). A dose-finding study on the effects of branch chain amino acids on surrogate markers of brain dopamine function. Psychopharmacology (Berl).160(2):192-197.
    Gleeson M. (2005). Interrelationship between physical activity and branched-chain amino acids. J Nutr. 135(6 Suppl):1591S-1595S.
    Gomez-Merino D, Béquet F, Berthelot M, Chennaoui M, Guezennec CY. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neurosci Lett. 301(2):143-146.
    Gualano AB, Bozza T, Lopes De Campos P, Roschel H, Dos Santos Costa A, Luiz Marquezi M, Benatti F, Herbert Lancha Junior A. (2011). Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J Sports Med Phys Fitness. 51(1):82-88.
    Gutknecht L, Kriegebaum C, Waider J, Schmitt A, Lesch KP. (2009). Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol. 19(4):266-282. doi: 10.1016/j.euroneuro.2008.12.005.
    Haralambie G, Berg A. (1976). Serum urea and amino nitrogen changes with exercise duration. Eur J Appl Physiol Occup Physiol. 36(1):39-48.
    Harper AE, Miller RH, Block KP. (1984). Branched-chain amino acid metabolism. Annu Rev Nutr. 4:409-454.
    Hassmén P, Blomstrand E, Ekblom B, Newsholme EA. (1994). Branched-chain amino acid supplementation during 30-km competitive run: mood and cognitive performance. Nutrition. 10(5):405-410.
    Hatazawa Y, Tadaishi M, Nagaike Y, Morita A, Ogawa Y, Ezaki O, Takai-Igarashi T, Kitaura Y, Shimomura Y, Kamei Y, Miura S. (2014). PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle. PLoS One. 9(3):e91006. doi: 10.1371/journal.pone.0091006.
    Hillman CH, Erickson KI, Kramer AF. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 9(1):58-65.
    Hoshi Y, Tamura M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol (1985). 75(4):1842-1846.
    Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 9:20. doi: 10.1186/1550-2783-9-20.
    Hursel R, Martens EA, Gonnissen HK, Hamer HM, Senden JM, van Loon LJ, Westerterp-Plantenga MS. (2015). Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy. PLoS One. 10(9):e0137183. doi: 10.1371/journal.pone.0137183.
    Hutson Hood DA, Terjung RL. (1990). Amino acid metabolism during exercise and following endurance training. Sports Med. 9(1):23-35.
    Hutson SM, Sweatt AJ, Lanoue KF. (2005). Branched-chain amino acid metabolism: implications for establishing safe intakes. J Nutr. 135(6 Suppl):1557S-1564S.
    Jackman SR, Witard OC, Jeukendrup AE, Tipton KD. (2010). Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exer..42(5):962-970. doi: 10.1249/MSS.0b013e3181c1b798.
    Jacobs BL, Fornal CA. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology. 21(2 Suppl):9S-15S.
    Kähkönen S, Mäkinen V, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J. (2005). Serotonergic modulation of mismatch negativity. Psychiatry Res. 138(1):61-74.
    Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol. 65(2):114-121.
    Kamijo K., Pontifex M.B., O’Leary K.C., Scudder M.R., Wu C.T., Castelli D.M., Hillman C.H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Dev Sci. 14:1046-1058.
    doi: 10.1111/j.1467-7687.2011.01054.x.
    Karvonen MJ, Kentala E, Mustala O. (1957). The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 35(3):307-315.
    Kema IP, Meijer WG, Meiborg G, Ooms B, Willemse PH, de Vries EG. (2001). Profiling of tryptophan-related plasma indoles in patients with carcinoid tumors by automated, on-line, solid-phase extraction and HPLC with fluorescence detection. Clin Chem. 47(10):1811-1820.
    Kema IP, Schellings AM, Hoppenbrouwers CJ, Rutgers HM, de Vries EG, Muskiet FA. (1993). High performance liquid chromatographic profiling of tryptophan and related indoles in body fluids and tissues of carcinoid patients. Clin Chim Acta. 221(1-2):143-158.
    Kim DH, Kim SH, Jeong WS, Lee HY. (2013). Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances. J Exerc Nutrition Biochem. 17(4):169-180. doi: 10.5717/jenb.2013.17.4.169.
    Knechtle B, Mrazek C, Wirth A, Knechtle P, Rüst CA, Senn O, Rosemann T, Imoberdorf R, Ballmer P. (2012). Branched-chain amino acid supplementation during a 100-km ultra-marathon--a randomized controlled trial. J Nutr Sci Vitaminol (Tokyo). 58(1):36-44.
    Kraus MR, Schäfer A, Teuber G, Porst H, Sprinzl K, Wollschläger S, Keicher C, Scheurlen M. (2013). Improvement of neurocognitive function in responders to an antiviral therapy for chronic hepatitis C. Hepatology. 58(2):497-504. doi: 10.1002/hep.26229.
    Layman DK. (2003). The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 133(1):261S-267S.
    Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage. 54(4):2922-2936. doi: 10.1016/j.neuroimage.2010.10.058.
    Lemon PW, Deutsch DT, Payne WR. (1989). Urea production during prolonged swimming. J Sports Sci. 7(3):241-246.
    Lindseth G, Helland B2, Caspers J3. (2015). The effects of dietary tryptophan on affective disorders. Arch Psychiatr Nurs. 29(2):102-107. doi: 10.1016/j.apnu.2014.11.008.
    Lise Gauvin, W. Jack Rejeski. (1993). The Exercise-Induced Feeling Inventory:
    Development and Initial Validation. Journal of Sport and Exercise Psychology. 15:403-423.
    Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H. (2009a). Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fitness. 49(4):424-431.
    Matsumoto K, Koba T, Hamada K, Tsujimoto H, Mitsuzono R. (2009b). Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J Nutr Sci Vitaminol (Tokyo). 55(1):52-58.
    Matsumoto K, Mizuno M, Mizuno T, Dilling-Hansen B, Lahoz A, Bertelsen V, Münster H, Jordening H, Hamada K, Doi T. (2007). Branched-chain amino acids and arginine supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. Int J Sports Med. 28(6):531-538.
    Matthias E, Schandry R, Duschek S, Pollatos O. (2009). On the relationship between interoceptive awareness and the attentional processing of visual stimuli. Int J Psychophysiol. 72(2):154-159. doi: 10.1016/j.ijpsycho.2008.12.001.
    McMorris T, Myers S, MacGillivary WW, Sexsmith JR, Fallowfield J, Graydon J, Forster D. (1999). Exercise, plasma catecholamine concentrations and decision-making performance of soccer players on a soccer-specific test. J Sports Sci. 17(8):667-676.
    Meeusen R, Thorré K, Chaouloff F, Sarre S, De Meirleir K, Ebinger G, Michotte Y. (1996). Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res. 740(1-2):245-252.
    Mehta RK, Parasuraman R. (2014). Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach. Hum Factors. 56(4):645-56.
    Messier C. (2004). Glucose improvement of memory: a review. Eur J Pharmacol. 490(1-3):33-57.
    Mirelman A, Maidan I, Bernad-Elazari H, Nieuwhof F, Reelick M, Giladi N, Hausdorff JM. (2014). Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults. J Neuroeng Rehabil. 11:85. doi: 10.1186/1743-0003-11-85.
    Mittleman KD, Ricci MR, Bailey SP. (1998). Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc. 30(1):83-91.
    Moriarty M, Lee A, O'Connell B, Kelleher A, Keeley H, Furey A. (2011). Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder. Anal Bioanal Chem. 401(8):2481-2493. doi: 10.1007/s00216-011-5322-7.
    Newsholme EA, Blomstrand E. (1995). Tryptophan, 5-hydroxytryptamine and a possible explanation for central fatigue. Adv Exp Med Biol. 384:315-320.
    Newsholme EA, Blomstrand E, Ekblom B. (1992). Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. Br Med Bull. 48(3):477-495.
    Nosaka K, Newton. (2002). Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res. 16(2):202-208.
    Nutt JG, Horak FB, Bloem BR. (2011). Milestones in gait, balance, and falling. Mov Disord. 26(6):1166-1174. doi: 10.1002/mds.23588.
    Nybo L, Dalsgaard MK, Steensberg A, Møller K, Secher NH. (2005). Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J Physiol. 563(Pt 1):285-290.
    Panteleimon Ekkekakis, Steven J. Petruzzello. (2001). Analysis of the affect measurement conundrum in exercise psychology: II. A conceptual and methodological critique of the Exercise-induced Feeling inventory. Psychology of Sport and Exercise. (2)1:1-26.
    Pardridge W.M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem. 28(1):103-108.
    Paschalis V, Koutedakis Y, Jamurtas AZ, Mougios V, Baltzopoulos V. (2005). Equal volumes of high and low intensity of eccentric exercise in relation to muscle damage and performance. J Strength Cond Res. 19(1):184-188.
    Pedersen BK, Hoffman-Goetz L. (2000). Exercise and the immune system: regulation, integration, and adaptation. Physiological Reviews. 80(3):1055-1081.
    Pereira EA, Green AL, Nandi D, Aziz TZ. (2007). Deep brain stimulation: indications and evidence. Expert Rev Med Devices. 4(5):591-603.
    Perrey S. (2008). Non-invasive NIR spectroscopy of human brain function during exercise. Methods. 45(4):289-299. doi: 10.1016/j.ymeth.2008.04.005.
    Perrier JF, Cotel F. (2015). Serotonergic modulation of spinal motor control. Curr Opin Neurobiol. 33:1-7. doi: 10.1016/j.conb.2014.12.008.
    Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA. (2009). The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc. 41(4):927-934. doi: 10.1249/MSS.0b013e3181907d69.
    Price SR, Wang X, Bailey JL. (1998). Tissue-specific responses of branched-chain alpha-ketoacid dehydrogenase activity in metabolic acidosis. J Am Soc Nephrol. 9(10):1892-1898.
    Rissanen AP, Tikkanen HO, Koponen AS, Aho JM, Hägglund H, Lindholm H, Peltonen JE. (2012). Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O(2) carrying capacity. Front Physiol. 3:265. doi: 10.3389/fphys.2012.00265.
    Roberts CA, Montgomery C. (2015). Cortical oxygenation suggests increased effort during cognitive inhibition in ecstasy polydrug users. J Psychopharmacol. 29(11):1170-1181. doi: 10.1177/0269881115598412.
    Robertson CS, Cormio M. (1995). Cerebral metabolic management. New Horiz. 3:410-422.
    Rowbottom DG, Keast D, Morton AR. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 21(2):80-97.
    Sareen S. Gropper, Jack L. Smith (2013). Advanced Nutrition and Human Metabolism 6th Edition.
    Schmit C, Davranche K, Easthope CS, Colson SS, Brisswalter J, Radel R. (2015). Pushing to the limits: the dynamics of cognitive control during exhausting exercise. Neuropsychologia. 68:71-81. doi: 10.1016/j.neuropsychologia.2015.01.006.
    Schmitt JA, Jorissen BL, Sobczak S, van Boxtel MP, Hogervorst E, Deutz NE, Riedel WJ. (2000). Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers. J Psychopharmacol. 14(1):21-29.
    Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, Kobayashi H, Mawatari K, Obayashi M, Harris RA. (2006a). Branched-chain amino acid catabolism in exercise and liver disease. J Nutr. 136(1 Suppl):250S-253S.
    Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K. (2006b). Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 36(2):529S-532S.
    Smriga M, Kameishi M, Tanaka T, Kondoh T, Torii K. (2002). Preference for a solution of branched-chain amino acids plus glutamine and arginine correlates with free running activity in rats: involvement of serotonergic-dependent processes of lateral hypothalamus. Nutr Neurosci. 5(3):189-199.
    Smriga M, Kameishi M, Torii K (2006). Exercise-dependent preference for a mixture of branched-chain amino acids and homeostatic control of brain serotonin in exercising rats. J Nutr. 136: 548S-552S.
    Spillane M, Emerson C, Willoughby DS. (2012). The effects of 8 weeks of heavy resistance training and branched-chain amino acid supplementation on body composition and muscle performance. Nutr Health. 21(4):263-273. doi: 10.1177/0260106013510999.
    Stephanson N, Dahl H, Helander A, Beck O. (2005). Determination of urinary 5-hydroxytryptophol glucuronide by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 816(1–2):107-112.
    Strüder HK, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K. (1998). Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res. 30(4):188-194.
    Sturm W, Longoni F, Fimm B, Dietrich T, Weis S, Kemna S, Herzog H, Wilmes K. (2004). Network for auditory intrinsic alertness: a PET study. Neuropsychologia. 42, 563-568.
    Sturm W, Willmes K, Orgass B, Hartje W. (1997). Do specific attention deficits need specific training? Neuropsychol. Rehabil. 7, 81-103.
    Talari NK, Panigrahi M, Madigubba S, Challa S, Phanithi PB. (2016). Altered tryptophan metabolism in human meningioma. J Neurooncol. 130(1):69-77.
    Tang FC. (2003). Effect of Branched-Chain Amino Acid Supplementation on Body Composition Measured with SBIA: an Advanced BIA. Nutritional Sciences Journal. 28(2):65-73.
    Tang FC. (2006). Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming. J Am Coll Nutr. 25(3):188-194.
    Tang FC, Chan CC. (2016). Contribution of branched-chain amino acids to purine nucleotide cycle: a pilot study. Eur J Clin Nutr. doi: 10.1038/ejcn.2016.161.
    Tang FC, Lee CW & Hsieh SY. (1997). Physiological and performance effects of adding branched-chain amino acids to a high carbohydrate formula diet during exercise. Journal of Nutritional Science. 22 (4), 361-371.
    Tanji J, Hoshi E. (2001). Behavioral planning in the prefrontal cortex. Curr Opin Neurobiol. 11(2):164-170.
    Tarumi T, Gonzales MM, Fallow B, Nualnim N, Lee J, Pyron M, Tanaka H, Haley AP. (2015). Cerebral/Peripheral Vascular Reactivity and Neurocognition in Middle-Age Athletes. Med Sci Sports Exerc. 47(12):2595-2603. doi: 10.1249/MSS.0000000000000717.
    Tekes K. (2008). HPLC determination of serotonin and its metabolites from human platelet-rich plasma; shift to 5-hydroxytryptophol formation following alcohol consumption. J Chromatogr Sci. 46(2):169-173.
    Totsuka M, Nakaji S, Suzuki K, Sugawara K, Sato K. (2002). Break point of serum creatine kinase release after endurance exercise. J Appl Physiol (1985). (4):1280-1286.
    Totsuka M, Naganuma S, Suzuki K, Nakaji S, Sato K, Sugawara K. (1996). Rapid adaptation of creatine kinase responses to repeated daily endurance exercise. J Phys Fit Nutr Immunol. 6:187-190.
    Tsikas D, Wolf A, Frölich JC. (2004). Simplified HPLC method for urinary and circulating creatinine. Clin Chem. 50(1):201-203.
    Tsujii T, Komatsu K, Sakatani K. (2013). Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study. Adv Exp Med Biol. 765:293-298. doi: 10.1007/978-1-4614-4989-8_41.
    van Zomeren, A.H., Brouwer,W.H. (1994). Clinical Neuropsychology of Attention. Oxford University Press, New York.
    Vermeij A, van Beek AH, Olde Rikkert MG, Claassen JA, Kessels RP. (2012). Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PLoS One. 7(9):e46210. doi: 10.1371/journal.pone.0046210.
    Wallat M, Hartje W, Willmes K. (1995). Erprobung eines computergestützten verfahrens zur prüfung der geteilten aufmerksamkeit mit hirngeschädigten patienten [evaluation of a computerized test of divided attention with brain-damaged patients]. Zeitschrift für Neuropsychologie. 6:128-136.
    Wallat DJ, Smeeton NJ, Watt PW. (2010). Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol. 91(3):200-219. doi: 10.1016/j.pneurobio.2010.01.012.
    Walther DJ, Bader M. (2003). A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 66(9):1673-1680.
    Wechsler H., Devereaux R.S., Davis M., Collins J. (2000). Using the school environment to promote physical activity and healthy eating. Preventive Medicine. 31:S121-S137.
    Westerblad H, Allen DG, Lännergren J. (2002). Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 17:17-21.
    Williams, M. H. (2007). Body weight and composition for health and sport. In Nutrition for Health, Fitness & Sport (8th ed) (pp. 363-398). New York: McGraw-Hill.
    Wilson WM, Marsden CA. (1996). In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behav Pharmacol. 7(1):101-104.
    Yamamoto T, Newsholme EA. (2000). Diminished central fatigue by inhibition of the L-system transporter for the uptake of tryptophan. Brain Res Bull. 52(1):35-38.
    Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage. 50(4):1702-1710. doi: 10.1016/j.neuroimage.2009.12.023.
    Young SN. (2007). How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci. 32(6):394-399.
    Zhao J, Chen H, Ni P, Xu B, Luo X, Zhan Y, Gao P, Zhu D. (2011). Simultaneous determination of urinary tryptophan, tryptophan-related metabolites and creatinine by high performance liquid chromatography with ultraviolet and fluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci. 879(26):2720-2725. doi: 10.1016/j.jchromb.2011.07.035.

    下載圖示
    QR CODE