簡易檢索 / 詳目顯示

研究生: 陳柏穎
Chen, Bo-Ying
論文名稱: 動態伸展腿後肌群對於女性運動員下肢關節側向切入的生物力學分析
Lower extremity joint biomechanical analysis of hamstring dynamic stretch during side-cutting tasks in female athletes
指導教授: 李恆儒
Lee, Heng-Ju
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 運動傷害預防運動暖身肌肉神經控制
英文關鍵詞: sports injury prevention, dynamic warm up, neuromuscular control
DOI URL: http://doi.org/10.6345/NTNU201900043
論文種類: 學術論文
相關次數: 點閱:191下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緒論:前十字韌帶傷害是常見的膝關節運動傷害之一,過去研究發現女性運動員發生的比率高於男性二到四倍,經常發生在單腳支撐期的急停減速動作,此階段的腿後肌群扮演著穩定膝關節工作。一般在運動前常透過動態伸展來進行暖身,而過去研究也發現動態伸展是可以增加肌肉的活化以及力量,因此利用動態伸展來增加腿後肌群的活化或力量是有效預防前十字韌帶傷害的方式之一。本研究主要目的為透過腿後肌群的動態伸展,觀察女性運動員在側向切入動作的下肢關節生物力學特徵。方法:招募10名健康大專女性運動員,其中實驗參與者必須要有側向切入及腿後肌群動態伸展的經驗。本實驗會先進行側向切入前測,休息到無疲勞後,接著進行腿後肌群的動態伸展,最後進行側向切入後測。實驗儀器使用8台Vicon紅外線攝影機 (250 Hz)、1塊Kistler測力板 (1000 Hz) 與5顆Delsys無線肌電 (2000 Hz) 同步收集側向切入動作時的生物力學參數。使用重複量數單因子變異數分析比較伸展前及伸展後的差異。結果:在動態伸展後膝屈肌群 (半腱肌、股二頭肌和腓腸肌) 活化和肌肉共同收縮 (H/Q比值) 在伸展後都有顯著增加,這也影響垂直地面反作用力與膝內翻力矩峰值顯著下降。雖然膝關節角度和伸展前相比則未達顯著差異,但是在踝關節矢狀面的活動度有增加的趨勢。結論:透過動態伸展可增加膝屈肌群的活化,藉此提升膝關節及踝關節著地時的緩衝能力,降低地面反作用力使膝關節的力矩減少,進而促進前十字韌帶傷害的預防。

    Introduction: Anterior cruciate ligament (ACL) injury was one of the common sport-related knee injuries. The previous study found that female athletes were 2 to 4 times higher prevalence of ACL injury than male athletes. ACL injury usually occurred at sudden stop and deceleration phase during single leg stance where hamstrings acts to stabilized the knee joint. The common warm up was dynamic stretching and the previous study found that it could enhance muscle activation and strength. Therefore, using dynamic stretching to increase hamstrings activation or strength might be one of the possible method to prevent ACL injury. The purpose of this study was to investigate the influence of hamstrings dynamic stretching on lower extremity joint biomechanical parameters of female athletes during side-cutting tasks. Methods: There were 10 healthy female collegiate athletes participated in this study. Participants must have experience of side-cutting and hamstrings dynamic stretching. During the experiment, participants were asked to perform side-cutting for pretest after that rest to no fatigue, and then perform hamstrings dynamic stretching, finally perform side-cutting for posttest. Biomechanical data were collected synchronously by 8 VICON cameras (250 Hz), 1 Kistler force plate (1000 Hz) and 5 Delsys wireless EMG sensors (2000 Hz) during side-cutting tasks. One-way ANOVA with repeated measures was used to compare each biomechanical parameter before and after hamstrings dynamic stretching. Results: Participants showed significantly greater knee flexor (semitendinosus, biceps femoris and gastrocnemius) activation and muscle co-contraction ratio (H/Q ratio) after hamstrings dynamic stretching that caused vertical ground reaction force and peak knee varus moment decreasing significantly. Although knee angles were no significant difference after hamstrings dynamic stretching, but ankle sagittal range of motion had an increasing trend. Conclusion: Dynamic stretching could increase the activation of the knee flexor, and improved shock absorption of the knee joint and ankle joint during landing phase which could decrease ground reaction force to reduce the knee moment. Therefore, it might promote the prevention of anterior cruciate ligament injury.

    中文摘要 i 英文摘要 ii 目次 iii 表次 v 圖次 v 第壹章 緒論 01 第一節 問題背景 01 第二節 研究問題 03 第三節 研究目的 03 第四節 研究假設 03 第五節 研究對象 04 第六節 研究限制 04 第七節 名詞操作性定義 04 第八節 研究的重要性 05 第貳章 文獻探討 06 第一節 女性發生前十字韌帶傷害機率 06 第二節 側向切入動作相關研究文獻 (膝關節負荷影) 08 第三節 動作前肌肉預先活化 12 第四節 動態伸展對於肌肉影響 14 第五節 文獻統整 16 第参章 研究方法 17 第一節 招募對象 17 第二節 研究工具 17 第三節 實驗程序 20 第四節 資料處理 25 第五節 統計考驗 28 第肆章 結果 29 第一節 動態伸展對於運動學之影響 29 第二節 動態伸展對於動力學之影響 32 第三節 動態伸展對於肌肉活化之影響 37 第伍章 討論 41 第一節 動態伸展對於肌肉活化之影響 41 第二節 動態伸展對於關節角度之影響 41 第三節 動態伸展對於關節力矩之影響 42 第四節 MH/LH共同收縮比對於著地減速期之影響 44 第五節 H/Q共同收縮比對於合併膝關節負荷之影響 45 第六節 動態伸展速度對於肌肉活化之影響 45 第陸章 結論與建議 46 參考文獻 47 附錄一(各分期關節角度表) 54 附錄二(各分期關節力矩表) 55 附錄三(各分期肌肉活化表) 56 附錄四(Visual 3D Landmarks建立與定義) 58 附錄五(受試者實驗須知) 60 附錄六(受試者同意書) 61 附錄七(受試者基本資料表) 62 附錄八(肢段參數測量表) 63

    李育銘、李恆儒 (2013)。不同方向的躍起著地對下肢矢狀面關節運動學、動力學和能量學的影響。體育學報,46(1),33-44。doi: 10.6222/pej.4601.201303.0804
    林建志、李育銘、李恆儒 (2015)。前十字韌帶重建後運動員從事躍起著地動作時下肢關節運動與肌肉活化特徵。體育學報,48(1),45-58。doi: 10.3966/102472972015034801004
    楊文傑、曾暐晉、陳哲修 (2018)。不同柔軟度測量與伸展運動預測腿後腱肌群拉傷之效益。中華體育季刊,32(3),203-213。doi: 10.3966/102473002018093203005
    Amiri-Khorasani, M., & Kellis, E. (2013). Static vs. dynamic acute stretching effect on quadriceps muscle activity during soccer Instep kicking. Journal of human kinetics, 39(1), 37-47.
    Arendt, E., & Dick, R. (1995). Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. The American journal of sports medicine, 23(6), 694-701.
    Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European journal of applied physiology, 111(11), 2633-2651.
    Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2015). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Applied physiology, nutrition, and metabolism, 41(1), 1-11.
    Bendjaballah, M., Shirazi-Adl, A., & Zukor, D. J. (1997). Finite element analysis of human knee joint in varus-valgus. Clinical biomechanics, 12(3), 139-148.
    Benjaminse, A., Lemmink, K. A., Diercks, R. L., & Otten, B. (2010). An investigation of motor learning during side-step cutting, design of a randomised controlled trial. BMC musculoskeletal disorders, 11(1), 235.
    Besier, T. F., Lloyd, D. G., & Ackland, T. R. (2003). Muscle activation strategies at the knee during running and cutting maneuvers. Medicine & Science in Sports & Exercise, 35(1), 119-127.
    Burkhart, B., Ford, K. R., Myer, G. D., Heidt Jr, R. S., & Hewett, T. E. (2008). Anterior cruciate ligament tear in an athlete: does increased heel loading contribute to ACL rupture? North American journal of sports physical therapy, 3(3), 141.
    Chappell, J. D., Creighton, R. A., Giuliani, C., Yu, B., & Garrett, W. E. (2007). Kinematics and electromyography of landing preparation in vertical stop-jump. The American journal of sports medicine, 35(2), 235-241.
    Chappell, J. D., Yu, B., Kirkendall, D. T., & Garrett, W. E. (2002). A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. The American journal of sports medicine, 30(2), 261-267.
    Collins, J. D., Almonroeder, T. G., Ebersole, K. T., & O'connor, K. M. (2016). The effects of fatigue and anticipation on the mechanics of the knee during cutting in female athletes. Clinical Biomechanics, 35, 62-67.
    Cowling, E. J., & Steele, J. R. (2001). Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. Journal of Electromyography and Kinesiology, 11(4), 263-268.
    Croix, M. B. D. S., ElNagar, Y. O., Iga, J., James, D., & Ayala, F. (2015). Electromechanical delay of the hamstrings during eccentric muscle actions in males and females: Implications for non-contact ACL injuries. Journal of Electromyography and Kinesiology, 25(6), 901-906.
    DeFrate, L. E., Sun, H., Gill, T. J., Rubash, H. E., & Li, G. (2004). In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of biomechanics, 37(10), 1499-1504.
    El-Ashker, S., Carson, B. P., Ayala, F., & Croix, M. D. S. (2017). Sex-related differences in joint-angle-specific functional hamstring-to-quadriceps strength ratios. Knee Surgery, Sports Traumatology, Arthroscopy, 25(3), 949-957.
    Favre, J., Clancy, C., Dowling, A. V., & Andriacchi, T. P. (2016). Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. The American journal of sports medicine, 44(6), 1540-1546.
    Fletcher, I. M. (2010). The effect of different dynamic stretch velocities on jump performance. European journal of applied physiology, 109(3), 491-498.
    Ford, K. R., Myer, G. D., & Hewett, T. E. (2003). Valgus knee motion during landing in high school female and male basketball players. Medicine & Science in Sports & Exercise, 35(10), 1745-1750.
    Herda, T. J., Cramer, J. T., Ryan, E. D., McHugh, M. P., & Stout, J. R. (2008). Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. The Journal of Strength & Conditioning Research, 22(3), 809-817.
    Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V., & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes. The American journal of sports medicine, 27(6), 699-706.
    Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., ... & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. The American journal of sports medicine, 33(4), 492-501.
    Hewett, T. E., Myer, G. D., Ford, K. R., Paterno, M. V., & Quatman, C. E. (2016). Mechanisms, prediction & prevention of ACL injuries: Cut risk with 3 sharpened & validated tools. Journal of Orthopaedic Research.
    Hewett, T. E., Myer, G. D., & Zazulak, B. T. (2008). Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. Journal of Science and Medicine in Sport, 11(5), 452-459.
    Hewett, T. E., Stroupe, A. L., Nance, T. A., & Noyes, F. R. (1996). Plyometric training in female athletes: decreased impact forces and increased hamstring torques. The American journal of sports medicine, 24(6), 765-773.
    Hewett, T. E., Zazulak, B. T., & Myer, G. D. (2007). Effects of the menstrual cycle on anterior cruciate ligament injury risk. The American journal of sports medicine, 35(4), 659-668.
    Hewett, T. E., Zazulak, B. T., Myer, G. D., & Ford, K. R. (2005). A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. British Journal of Sports Medicine, 39(6), 347-350.
    Hough, P. A., Ross, E. Z., & Howatson, G. (2009). Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. The Journal of Strength & Conditioning Research, 23(2), 507-512.
    Hutchinson, M. R., & Ireland, M. L. (1995). Knee injuries in female athletes. Sports medicine, 19(4), 288-302.
    Jónasson, G., Helgason, A., Ingvarsson, Þ., Kristjánsson, A. M., & Briem, K. (2016). The effect of tibial rotation on the contribution of medial and lateral hamstrings during isometric knee flexion. Sports health, 8(2), 161-166.
    Kaneko, F., Onari, K., Kawaguchi, K., Tsukisaka, K., & Roy, S. H. (2002). Electromechanical delay after ACL reconstruction: an innovative method for investigating central and peripheral contributions. Journal of Orthopaedic & Sports Physical Therapy, 32(4), 158-165.
    Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., ... & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. The American journal of sports medicine, 38(11), 2218-2225.
    Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930-935.
    Markolf, K. L., Gorek, J. F., Kabo, J. M., & Shapiro, M. S. (1990). Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. JBJS, 72(4), 557-567.
    McLean, S. G., Lipfert, S. W., & Van Den Bogert, A. J. (2004). Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Medicine and science in sports and exercise, 36(6), 1008.
    Montgomery, C., Blackburn, J., Withers, D., Tierney, G., Moran, C., & Simms, C. (2016). Mechanisms of ACL injury in professional rugby union: a systematic video analysis of 36 cases. British Journal of Sports Medicine, 52(15), 994-1001.
    Myer, G. D., Brent, J. L., Ford, K. R., & Hewett, T. E. (2011). Real-time assessment and neuromuscular training feedback techniques to prevent ACL injury in female athletes. Strength and conditioning journal, 33(3), 21.
    O’Connor, K. M., Johnson, C., & Benson, L. C. (2015). The effect of isolated hamstrings fatigue on landing and cutting mechanics. Journal of applied biomechanics, 31(4), 211-220.
    Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J., & Pandy, M. G. (2004). Model prediction of anterior cruciate ligament force during drop-landings. Medicine & Science in Sports & Exercise, 36(11), 1949-1958.
    Podraza, J. T., & White, S. C. (2010). Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury. The Knee, 17(4), 291-295.
    Prodromos, C. C., Han, Y., Rogowski, J., Joyce, B., & Shi, K. (2007). A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury–reduction regimen. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23(12), 1320-1325.
    Quatman, C. E., Ford, K. R., Myer, G. D., Paterno, M. V., & Hewett, T. E. (2008). The effects of gender and pubertal status on generalized joint laxity in young athletes. Journal of Science and Medicine in Sport, 11(3), 257-263.
    Ruan, M., Zhang, Q., & Wu, X. (2017). Acute Effects of Static Stretching of Hamstring on Performance and Anterior Cruciate Ligament Injury Risk During Stop-Jump and Cutting Tasks in Female Athletes. Journal of strength and conditioning research, 31(5), 1241.
    Saunders, N., McLean, S. G., Fox, A. S., & Otago, L. (2014). Neuromuscular dysfunction that may predict ACL injury risk: a case report. The Knee, 21(3), 789-792.
    Schmitz, R. J., Kulas, A. S., Perrin, D. H., Riemann, B. L., & Shultz, S. J. (2007). Sex differences in lower extremity biomechanics during single leg landings. Clinical Biomechanics, 22(6), 681-688.
    Sekir, U., Arabaci, R., Akova, B., & Kadagan, S. M. (2010). Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scandinavian journal of medicine & science in sports, 20(2), 268-281.
    Self, B. P., & Paine, D. (2001). Ankle biomechanics during four landing techniques. Medicine & Science in Sports & Exercise, 33(8), 1338-1344.
    Serpell, B. G., Scarvell, J. M., Pickering, M. R., Ball, N. B., Newman, P., Perriman, D., ... & Smith, P. N. (2015). Medial and lateral hamstrings and quadriceps co-activation affects knee joint kinematics and ACL elongation: a pilot study. BioMed Central musculoskeletal disorders, 16(1), 348.
    Steele, J. R., & Brown, J. M. M. (1999). Effects of chronic anterior cruciate ligament deficiency on muscle activation patterns during an abrupt deceleration task. Clinical Biomechanics, 14(4), 247-257.
    Sung, P. S., & Lee, D. C. (2009). Gender differences in onset timing and activation of the muscles of the dominant knee during stair climbing. The Knee, 16(5), 375-380.
    Teng, P. S. P., Kong, P. W., & Leong, K. F. (2017). Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction. The Knee.
    Trent, P. S., Walker, P. S., & Wolf, B. (1976). Ligament length patterns, strength, and rotational axes of the knee joint. Clinical orthopaedics and related research, (117), 263-270.
    Vanrenterghem, J., Venables, E., Pataky, T., & Robinson, M. A. (2012). The effect of running speed on knee mechanical loading in females during side cutting. Journal of biomechanics, 45(14), 2444-2449.
    Walsh, M., Boling, M. C., McGrath, M., Blackburn, J. T., & Padua, D. A. (2012). Lower extremity muscle activation and knee flexion during a jump-landing task. Journal of athletic training, 47(4), 406-413.
    Wild, C. Y., Munro, B. J., & Steele, J. R. (2017). Higher anterior knee laxity influences the landing biomechanics displayed by pubescent girls. Journal of sports sciences, 35(2), 159-165.
    Xie, D., Urabe, Y., Ochiai, J., Kobayashi, E., & Maeda, N. (2013). Sidestep cutting maneuvers in female basketball players: stop phase poses greater risk for anterior cruciate ligament injury. The knee, 20(2), 85-89.
    Yu, B., Lin, C. F., & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21(3), 297-305.
    Zaslow, T. L., Pace, J. L., Mueske, N. M., Chua, M. C., Katzel, M. J., Dennis, S. W., & Wren, T. A. (2016). Comparison of lateral shuffle and side-step cutting in young recreational athletes. Gait & posture, 44, 189-193.

    下載圖示
    QR CODE