簡易檢索 / 詳目顯示

研究生: 黃紹彰
Shao-Chang Huang
論文名稱: 運動前攝取咖啡因對心臟自律神經之影響
The effects of caffeine ingestion before exercise on cardiac autonomic nervous systems
指導教授: 謝伸裕
Hsieh, Shen-Yu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 咖啡因運動心率變異性心臟自律神經
英文關鍵詞: caffeine, exercise, heart rate variability, cardiac autonomic nervous systems
論文種類: 學術論文
相關次數: 點閱:300下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究的目的是探討運動前攝取咖啡因,對於安靜、運動、恢復狀態的心臟自律神經系統造成的影響。方法:受試者為11位健康的男性(年齡:24.8 ± 1.6歲、身高:175.0 ± 4.9公分、體重:70.7 ± 6.0公斤),採重複量數的雙盲實驗設計,排空期為3天,以平衡次序原則分別攝取6mg/kg的咖啡因或安慰劑,60分鐘後進行60%VO2max的運動30分鐘,恢復期為10分鐘。以重複量數二因子變異數 ( 2-way ANOVA ) 分析五個不同時間點(運動前、運動初期、運動中期、運動末期、恢復期)咖啡因與安慰劑兩組之間心率變異性的差異,以相依樣本t考驗咖啡因對於血壓、警覺度 ( alertness visual analog scale, AVAS ) 與運動強度自覺程度 ( rating of perceived exertion, RPE ) 的影響,顯著水準為p<.05。結果:運動前,咖啡因組的LF功率值 ( +121.9% ) 與LF% ( +46.1% ) 顯著增加,收縮壓 ( +7.7% ) 、舒張壓 ( +8.4% ) 以及AVAS ( +16.7%) 均顯著高於安慰劑組 ( p<.05 )。運動過程中,咖啡因組在運動初期的HF% ( +83.6% )顯著高於安慰劑組 ( p<.05 )。在運動中期的VLF功率值 ( +53.5% ) 、LF 功率值( +60% ) 以及總功率 ( +54.3% ) 顯著提高 ( p<.05 ),運動末期的LF功率值 ( +45% ) 也顯著高於安慰劑組 ( p<.05 )。恢復期的舒張壓 ( +7.1% ) 與AVAS ( +7.9% ) 顯著高於安慰劑組 ( p<.05 )。結論:單次攝取咖啡因會顯著提高休息時交感神經系統活性,使警覺度及血壓增加。在30分鐘中等強度運動過程中,咖啡因一樣會使交感神經活性較佔優勢。但在恢復期,咖啡因所提高的亢奮性,可能造成恢復期的各項變項恢復較慢。

    Purpose: To investigate the effects of caffeine ingestion before exercise on cardiac autonomic nervous systems at rest, during exercise, and recovery. Methods: Subjects were 11 healthy male volunteers (age: 24.8 ± 1.6 yr, hight: 175.0 ± 4.9 cm, weight: 70.7 ± 6.0 kg). A double-blind repeated-measures design was used for the experiment. The testing order was counter-balanced with a 3-day washout period. Placebo or caffeine (6mg/kg) capsules were ingested 60 minutes before cycling on an ergometer for 30 minutes. The exercise intensity was at 60% of VO2max, and the recovery phase was 10 minutes. The effects of time and treatment were evaluated using a repeated-measures 2-way ANOVA to compare the heart rate variability between the trials at different phase (before exercise, primary phase, middle phase, last phase, and the recovery phase ). Student’s paired t-test was used for blood pressure ( BP ), alertness visual analog scale ( AVAS ) , and rating of perceived exertion ( RPE ). A p values of less than .05 were considered to be statistically significant. Data are expressed as mean ± SEM. Results: Before exercise the LF value ( +121.9% ), LF% ( +46.1% ), systolic pressure ( +7.7% ), diastolic pressure ( +8.4% ), and AVAS ( +16.7% ) were significantly increased for caffeine ingestion ( p<.05 ). During exercise, the HF% ( +83.6% ) of caffeine ingestion at the primary phase of exercise was significantly increased ( p<.05 ). The VLF value ( +53.5% ), LF value ( +60% ), and total power ( +54.3% ) were significantly higher at middle phase of exercise ( p<.05 ). The LF value ( +45% ) was significantly enhanced at last phase of exercise ( p<.05 ). The diastolic pressure ( +7.1% ) and AVAS ( +7.9% ) was significantly higher than placebo at the recovery phase ( p<.05 ). Conclusion: Acute caffeine ingestion can activate the sympathetic nervous system activity (SNSA), increase the alertness and BP at rest. During 30 min medium intensity exercise, the SNSA was more dominant for caffeine ingestion. However, the SNSA stimulation may also slow the recovery phase.

    碩士論文通過簽名書………………………………………………i 碩士論文授權書……………………………………………………ii 中文摘要..…………………………………………………………iii 英文摘要..…………………………………………………………iv 謝誌.…………………………………………………………………v 目次.…………………………………………………………………vi 表次.…………………………………………………………………ix 圖次.…………………………………………………………………x 第一章 緒論 第一節 研究背景………………………………………… 1 第二節 研究目的………………………………………… 3 第三節 研究假設………………………………………… 3 第四節 研究範圍………………………………………… 4 第五節 研究限制………………………………………… 4 第六節 操作性定義……………………………………… 5 第七節 研究重要性……………………………………… 6 第二章 文獻探討 第一節 自律神經與心血管系統的關係………………… 8 第二節 心率變異性在醫學上的應用……………………11 第三節 運動對自律神經系統的影響……………………21 第四節 咖啡因對生理的影響……………………………28 第五節 文獻總結…………………………………………38 第三章 研究方法 第一節 研究架構…………………………………………40 第二節 研究對象…………………………………………41 第三節 實驗時間地點……………………………………41 第四節 實驗器材…………………………………………41 第五節 實驗設計…………………………………………42 第六節 實驗方法…………………………………………44 第七節 資料蒐集及處理…………………………………47 第四章 結果 第一節 咖啡因對安靜狀態心跳率變異性的影響………48 第二節 咖啡因對運動狀態心跳率變異性的影響………48 第三節 咖啡因對恢復期心跳率變異性的影響…………50 第四節 比較兩組不同時間點心率變異性之變化………50 第五節 咖啡因對血壓的影響……………………………52 第六節 咖啡因對AVAS及RPE的影響……………………53 第五章 討論與結論 第一節 咖啡因對安靜狀態的影響………………………54 第二節 咖啡因對運動狀態的影響………………………55 第三節 咖啡因對恢復期的影響…………………………56 第四節 結論………………………………………………57 引用文獻 一、中文部份………………………………………………58 二、英文部份………………………………………………58 附錄一 覺醒程度視覺類比量表……………………………67 附錄二 運動強度自覺量表…………………………………68 附錄三 受試者須知…………………………………………69 附錄四 受試者同意書………………………………………70 附錄五 受試者健康情況調查表……………………………71 附錄六 一般飲食與藥品的咖啡因含量……………………72 個人小傳………………………………………………………73

    引用文獻
    中文部分:
    行政院衛生署 ( 2005年9月 ) 。衛生署研訂飲料咖啡因管理新措施。http://www.doh.gov.tw/cht/content.aspx?doc_no=42099
    林正常、王順正 ( 2002 ) 。健康運動的方法與保健。台北市:師大書苑。
    徐昕、高淙玄、張麗申 ( 1999 ) 。我國運動猝死調查研究。中國運動醫學雜誌,18 (2),99。
    陳高揚、郭正典、駱惠銘 ( 1995 ) 。心率變異度:原理與應用。桃園縣:衛生署桃園醫院心臟內科。
    郭正典、陳高揚 ( 1997 ) 。心率變異度及心肺功能失常。臨床醫學,39(5),271-274。
    蘇嘉富 ( 1994 ) 。運動與猝死。台北醫誌,38(6),58-63。
    夏淑怡(譯) ( 2004 ) 。免疫革命。台北市:麥田出版。 ( Abo, T., 2003)。

    英文部分:
    Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213, 220-223.

    Anosov, O., Patzak, A., Kononovich, Y., & Persson, P. B. (2000). High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. European Journal of Applied Physiology, 83(4-5), 388-394.

    Arai, Y., Saul, J. P., Albrecht, P., Hartly, L. H., Lilly, L. S., & Cohen, R. J. et al. (1989). Modulation of cardiac autonomic activity during and immediately after exercise. The American Journal of Physiology, 256(1), 132-141.

    Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889-919.

    Aubert, A. E., & Ramaekers, D. (1999). Neurocardiology: the benefits of irregularity: The basics of methodology, physiology and current clinical applications. Acta Cardiologica, 54(3), 107-120.

    Baylin, A., Hernandez-Diaz, S., Kabagambe, E. K., Siles, X., & Campos, H. (2006). Transient exposure to coffee as a trigger of a first nonfatal myocardial infarction. Epidemiology, 17(5), 506-511.

    Beckers, F., Ramaekers, D., Aubert, A. E., Cleemput van, J., Droogne, W., & Vanhaecke, J., et al. (1999). Evolution of intracardiac heart rate variability of the native sinus node in heart transplant patients. Medical & Biological Engineering & Computing , 37(1), 232-233.

    Brenner, I. K., Thomas, S., & Shephard, R. J. (1998). Autonomic regulation of the circulation during exercise and heat exposure: inferences from heart rate variability. Sports Medicine, 26(2), 85-99.

    Bigger Jr, J. T., Fleiss, J. L., Rolnitzky, L. M., Steinman, R. C., & Schneider, W. J. (1991). Time course of recovery of heart period variability after myocardial infarction. Journal of The American College of Cardiology, 18, 1643-1649.

    Bonnet, M., Tancer, M., Uhde, T., & Yeragani, V. K. (2005). Effects of caffeine on heart rate and QT variability during sleep. Depression and Anxiety, 22, 150-155.

    Casolo, G. C., Stroder, P., Signorini, C., Calzolari, F., Zucchini, M., & Balli, E. et al. (1992). Heart rate variability during the acute phase of myocardial infarction. Circulation, 85, 2073–2079.

    Cleland, J. G., Chattopadhyay, S., Khand, A., Houghton, T., & Kaye, G. C. (2002). Prevalence and incidence of arrhythmias and sudden death in heart failure. Heart Failure Reviews, 3, 229-242.

    Dews, P. B. (1984). Behavioral effects of caffeine. In: P. B. Dews ( Eds ), Caffeine: Perspective from recent research. p.86-103. Berlin Heiblbug: Springer Verlag.

    Dixon, E. M., Kamath, M. V., McCartney, N., & Fallen, E. L. (1992). Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovascular Research, 26(7), 713-719.

    Dodd, S., Her, R., & Power, S. (1993). Caffeine and performance. International Journal of Sport Medicine, 15, 14-23.

    Dougherty, C. M., & Burr, R. L. (1992). Comparison of heart rate variability in survivors and nonsurvivors of sudden cardiac arrest. The American Journal of Cardiology, 70, 441-448.

    Doubt, T. J., & Hsieh, S. S. (1991). Additive effects of caffeine and cold water during submaximal leg exercise. Medicine and Science in Sports and Exercise, 23(4), 435-442.

    Ewing, D. J., Martin, C. N., Young, R. J., & Clarke, B. F. (1985). The value of cardiovascular autonomic function tests: 10 years' experience in diabetes. Diabetes Care, 8, 491-498.

    Ewing, D. J., Neilson, J. M. N., & Shopiro, C. M. (1991). Twenty four hours heart rate variability: Effect of posture, sleep, and time of dog in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. British Heart Journal, 65(5), 239.

    Fagard, R. H. (1992). Impact of different sports and training on cardiac interprestructure and function. Cardiology Clinics, 10(2), 241-256.

    Fallen, E. L., Kamath, M. V., Ghista, D. N., Fitchett, D. (1988). Spectral analysis of heart rate variability following human heart transplantation: evidence for functional reinnervation. Journal of The Autonomic Nervous System, 23, 199-206.
    Freeman, R., Saul. J. P., Roberts, M. S., Berger, R. D., Broadbridge, C., & Cohen, R. J. (1991). Spectral analysis of heart rate in diabetic neuropathy. Archives of Neurology, 48, 185-190.

    Furlan, R., Piazza, S., Dell’Orto, S., Gentile, E., Cerutrti, S., & Pagani, M. (1993). Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovascular Research, 27(3), 482-488.

    Goldsmith, R. L., Bigger Jr, J. T., Steinman, R. C., & Fleiss, J. L. (1992). Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. Journal of the American College of Cardiology, 20(3), 552-558.

    Gonzalez-Camarena, R., Carrasco-Sosa, S., Roman-Ramos, R., Gaitan-Gonzalez, M. J., Medina-Banuelos, V., & Azpiroz-Leehan, J. (2000).Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Medicine and Science in Sports and Exercise, 32(10), 1719-1728.

    Grobbee, D. E., Rimm, E. B., Giovannucci, E., Colditz, G., Stampfer, M., & Willett, W. (1990). Coffee, caffeine, and cardiovascular disease in men. The New England Journal of Medicine, 323(15), 1026-1032.

    Guzzetti, S., Dassi, S., & Pecis, M. (1991). Altered pattern of circardian neural control of heart period in mild hypertension. Journal of Hypertension, 9, 831–838.

    Hainsworth, R. (1998). Physiology of the cardiac autonomic system. In M. Malik (Ed.), Clinical guide to cardiac autonomic tests. Dordrecht: Kluwer Academic Publishers.

    Janssen, M. J., de Bie, J., Swenne, C. A., & Oudhof, J. (1993). Supine and standing sympathovagal balance in athletes and controls. European Journal of Applied Physiology and Occupational Physiology, 67(2), 164-167.

    Jensen-Urstad, K., Saltin, B., Ericson, M., Storck, N., & Jensen-Urstad, M. (1997). Pronounced resting bradycardia in male elite runners is associated with high heart rate variability. Scandinavian Journal of Medicine & Science in Sports, 7(5), 274-278.

    Jouven, X., Empana, J. P., Schwartz, P. J., Desnos, M., Courbon, D., & Ducimetière, P. (2005).Heart-rate profile during exercise as a predictor of sudden death. The New England Journal of Medicine, 352(19), 1951-1958.

    Kamath, M. V., Fallen, E. L., & McKelvie, R. (1991). Effects of steady state exercise on the power spectrum of heart rate variability. Medicine and Science in Sports and Exercise, 23(4), 428-434.

    Kamath, M. V., & Fallen, E. L. (1993). Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Critical Reviews in Biomedical Engineering; 21, 245-311.

    Kawachi, I., Colditz, G. A., & Stone, C. B. (1994). Does coffee drinking increase the risk of coronary heart disease? Results from a meta-analysis. British Heart Journal, 72, 267-275.

    Kawamura, T., Miyaji, C., Toyabe, S., Fukuda, M., Watanabe, H., & Abo, T. (2000). Suppressive effect of antiulcer agents on granulocytes: A role for granulocytes in gastric ulcer formation. Digestive Diseases and Sciences, 45(9), 1786-1791.

    Langewitz, W., Ruddel, H., & Schachinger, H. (1994). Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress. American Heart Journal, 127, 122–128.

    Levy, M. N., & Martin, P. J. (1979). Neural control of the heart. In R. M. Berne (Ed.), Handbook of physiology (pp.581-620). Bethesda , MD: American Physiological Society.

    Levy, W. C., Cerqueira, M. D., Harp, G. D., Johannessen, K. A., Abrass, I. B., & Schwartz, R. S., et al. (1998). Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. The American Journal of Cardiology, 82(10), 1236-1241.

    Lishner, M., Akselrod, S., Avi, V. M., Oz, O., Divon, M., & Ravid, M. (1987). pectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. Journal of The Autonomic Nervous System, 19(2), 119-125.

    Maciel, B. C., Gallo, Jr. L., Marin, N. J. A., Lima-Filho, E. C., & Martins, L. E. (1986). Autonomic nervous control of the heart rate during dynamic exercise in normal man. Clinical Science, 71(4), 457-460.

    Malik, M., & Camm, A. J. (1994). Heart rate variability and clinical cardiology. British Heart Journal, 71, 3-6.

    Malliani, A. (1982). Cardiovascular sympathetic afferent fibers. Reviews of Physiology, Biochemistry and Pharmacology, 94, 11-74.

    Malpas, S. C. (2002). Neural influences on cardiovascular variability: Possibilities and pitfalls. American Journal of Physiology: Heart and Circulatory Physiology, 282, 6-20.

    Marple, S. L. (1987). Digital spectral analysis. Upper Saddle River, NJ: Prentice-Hall International.

    Matsumoto, T., Miyawaki, T., Ue, H., Kanda, T., Zenji, C., & Moritani, T. (1999). Autonomic responsiveness to acute cold exposure in obese and non-obese young women. International Journal of Obesity and Related Metabolic Disorders, 23(8), 793-800.

    McClaran, S. R., Wetter, T. J., Kruger, J. R., & Ewoldt, J. D. (2003). Low doses of caffeine reduce heart rate during submaximal cycle ergometry. Medicine & Science in Sports & Exercise, 35(5), 277.

    Myers, G. A., Martin, G. J., Magid, N. M., Barmett, P. S., Schaad, J. W., & Weiss, J. S. et al. (1986). Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods. IEEE Transactions on Biomedical Engineering, 33, 1149-1156.

    Nakamura, Y., Yamamoto, Y., & Muraoka, I. (1993). Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. Journal of Applied Physiology, 74(2), 875-881.

    Namdar, M., Koepfli, P., Grathwohl, R., Siegrist, P. T., Klainguti, M., & Schepis, T. et al. (2006). Caffeine decreases exercise-induced myocardial flow reserve. Journal of The American College of Cardiology, 47(2), 405-410.

    Natelson, B. H. (1985). Neurocardiology, an interdisciplinary area for the 80s. Archives of Neurology, 42, 178-184.

    Nishijima, Y., Ikeda, T., Takamatsu, M., Kiso, Y., Shibata, H., Fushiki, T., & Moritani, T. (2002). Influence of caffeine ingestion on autonomic nervous activity during endurance exercise in humans. European journal of applied physiology, 87, 475-480.

    Niskanen, J. P., Tarvainen, M. P., Ranta-aho, P. O., & Karjalainen, P. A. (2002). Software for advanced HRV analysis. University of Kuopio Department of Applied Physics Report Series, 2, 1-11.

    Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., & Pizzinelli, P. et al. (1986). Power spectral analysis of heart rate variability and artial pressure variability as a maker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178-193.

    Pagani, M., Malfatto, G., Pierini, S., Casati, R., Masu, A. M., & Poli, M. et al. (1988). Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. Journal of The Autonomic Nervous system, 23, 143–153.

    Perini, R., Orizio, C., Baselli, G., Cerutti, S., & Veicsteinas, A. (1990). The influence of exercise intensity on the power spectrum of heart rate variability. European Journal of Applied Physiology, 61(1-2), 143-148.

    Pomeranz, B., Macaulay, R. J. B., Caudill, M. A., Kuts, I., Adam, D., & Gordon, D. et al. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 245, 151-153.
    Pumprla, J., Howorka, K., & Groves, D. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology, 84, 1-14.

    Richardson, T., Ryder, J., Rozkovec, A., Meckes, C., Thomas, P., & Kerr, D. (2004). Influence of caffeine on heart rate variability in patients With long-standing type 1 diabetes. Diabetes Care, 27(5), 1127-1131.

    Sands, K. E., Appel, M. L., Lilly, L. S., Schoen, F. J., Mudge Jr, G. H., & Cohen, R. J.(1989). Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation, 79, 76-82.

    Seals, D. R., & Chase, P. B. (1989). Influence of physical training on heart rate variability and baroreflex circulatory control. Journal of Applied Physiology, 66(4), 1886-1895.

    Shin, K., Minamitani, H., Onishi, S., Yamazaki, H., & Lee, M. (1995). The power spectral analysis of heart rate variability in athletes during dynamic exercise: Part I. Clinical Cardiology, 18(10), 583-586.

    Singer, D. H., Baumgarten, C. M., & Ten Eick, R. E. (1981). Cellular electrophysiology of ventriculare and other dysrhythmias: Studies on diseased and ischemic heart. Progress in Cardiovascular Diseases, 24, 97-156.

    Sondermeijer, H. P., van Marle A.G. J., Kamen, P., & Krum, H. (2002). Acute effects of caffeine on heart rate variability. The American Journal of Cardiology, 90(8), 906-907.

    Stahle, A., Nordlander, R., & Bergfeldt, L. (1999). Aerobic group training improves exercise capacity and heart rate variability in elderly patients with a recent coronary event: A randomized controlled study. European Heart Journal, 20(22), 1638-1646.

    Task Force of the European Society of Cardiology & The North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354-381.
    The International Olympic Committee (2003). Anti-doping rules. Prague: Author.

    Tonkins, W. P. (1999). Analysis of the relationship between exercise capacity and heart rate variability in trained and untrained individuals. Eugene, OR: University of Oregon, Microform Publications.

    Tsuji, H., Larson, M. G., Venditti, Jr, F. J., Manders, E. S., Evans, J. C., Feldman, C. L. et al. (1996). Impact of reduced heart rate variability on risk for cardiac events. Circulation, 94, 2850-2855.

    Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., & Huikuri, H. V. (1996). Quantitative beat- to-beat analysis of heart rate dynamics during exercise. The American Journal of Physiology, 271(1), 244-252.

    Van Soeren, M. H., & Graham, T. E. (1998). Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. Journal of Applied Physiology, 85(4), 1493-1501.

    Verlinde, D., Beckers, F., Ramaekers, D., & Aubert, A. E. (2001). Wavelet decomposition analysis of heart rate variability in aerobic athletes. Autonomic Neuroscience: Basic & Clinical, 90(1-2), 138-141.

    Waring, W. S., Goudsmit, J., Marwick, J., Webb, D. J., & Maxwell, S. R. J. (2003). Acute caffeine intake influences central more than peripheral blood pressure in young adults. American Journal of Hypertension, 16(11), 919-924.

    Wolf, M. M., Varigos, G. A., Hunt, D., & Sloman, J. G. (1978). Sinus arrhythmia in acute myocardial infarction. Medicine Journal of Australia, 2, 52-53.

    QR CODE