研究生: |
李柏璋 Li, Po-Chang |
---|---|
論文名稱: |
以氙氣作為單原子針離子發射源之研究 The investigation of xenon in gas field ion source |
指導教授: |
傅祖怡
Fu, Tsu-Yi 黃英碩 Hwang, Ing-Shouh |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 單原子針 、場離子顯微鏡 |
英文關鍵詞: | Single atom tip, Field ion microscope |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用場離子顯微鏡(Field Ion Microscope, FIM),並使用本實驗室製作的附銥鎢單原子針作為場發射源,探討以氙氣作為氣體離子源的離子電流特性,並與氦氣離子源互相比較。
我們透過液態氮降溫針尖,並量測在不同溫度下,氙氣離子的飽和電流值,發現溫度降低接近至150 K附近時,離子電流有急遽增加 的趨勢,推測最佳工作溫度應為150 K以下附近。之後量測氙氣離子束的電流穩定性,與氦氣離子束的電流穩定性相當。透過以氙氣作為成像氣體的單原子針影像,計算出其離子束的張角小於1度,是非常集中的離子源,且角強度及亮度也有很好的表現。
氙氣離子束在150 K的工作溫度下,與氦氣離子束在22 K的工作溫度下的能力相近。若希望將氣體場發射離子源(Gas Field Ion Source, GFIS)應用在二次質譜儀(Secondary Ion Mass Spectroscopy, SIMS),則氙氣就具有成為此種離子源的潛力。
Xenon gas is the ion source of gas field ion source (GFIS), which emitter is the Ir/W <111>single atom tip in this research. We found the properties of xenon ion beam, and compared with helium ion beam.
We used liquid nitrogen to cool the tip, and measured the saturation ion current of xenon in different tip’s temperature. We found that when the temperature was approaching 150K, the ion current was increasing quickly. We guessed the optimum temperature for xenon ion beam is below 150K. Then we measured the stability of xenon ion beam. It’s as good as helium ion beam. Finally we calculated the open angle of xenon ion beam, which was in 1 degree, by its image in the field ion microscopy. It’s also has a good angular intensity and brightness.
Xenon ion beam has the same ability in 150K with helium ion beam in 22K. If we want to apply the GFIS in secondary ion mass spectroscopy (SIMS), xenon is the good choice for it.
[1] A Benninghoven, Surface analysis by secondary ion mass spectrometry (SIMS), Surface Science 299, 246-260(1994)
[2]郭鴻禧, 黃英碩, 傅祖怡, 鄭天佐, 熱穩定單原子針的製備特性與前景, 物理雙月刊二九卷一期, 25(2007)
[3]Hill, Raymond, John Notte, Bill Ward, The ALIS He ion source and its application to high resolution microscopy, Physics Procedia 1.1, 135-141(2008)
[4]S. Kalbitzera*, V.A. Zhukovb, Xenon nano-beams for materials research, Radiation Effects & Defects in Solids 166, 851–860(2011)
[5]Hans-Werner Fink, Mono-atomic tips for scanning tunneling microscopy, IBM Journal of Research and Development 30, 460(1986)
[6]Hans-Werner Fink, Point source for ions and electrons, Physica Scripta 38, 260(1988)
[7]V.T.Binh, S.T.Purcell, N.Garcia, J.Doglioni, Field-emission elelctron spectroscopy of single-atom tips, Physical Review Letters 69, 2527(1992)
[8]V.T.Binh, N.Garcia, On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique: experiments on W and Au tips, Ultramicroscopy 42, 80(1992)
[9]T.E. Madey, C.-H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.-S. Tao, Coexistence of {011} facets with {112} facets on W(111) induced by ultrathin films of Pd , Physical Review B 59,10335(1999)
[10]T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Method of Creating a Pd-Covered Single Atom Sharp W Pyramidal Tip: Mechanism and Energetic of Its Formation , Physical Review B 64, 113401-04(2001)
[11]H.S. Kuo, Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics , Japanese Journal of Applied Physics 45, 8972(2006)
[12]黃英碩, 郭鴻禧, 張哲誠, 林君岳, 鄭天佐, 單原子電子源與離子源之應用, 科儀新知第三十一卷第二期(2009)
[13] C.C. Chang, H.S. Kuo, T.T. Tsong, I.S. Hwang, A fully coherent electron beam from a noble-metal covered W(111)single-atom emitter, Nanotechnology 20, 115401(2009)
[14]E. W. Müller, Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope , Zeitschrift für Physik 106, 541(1937)
[15]E.W. Müller, T.T. Tsong, Field ion microscopy, principle & applications, Elsevier, New York, NY(1969)
[16]T.T. Tsong, Atom-probe field ion microscopy, Cambridge University Press, New York, NY(1990)
[17]E.W.Müller, K.Banhadur, Field ionization of Gases at a metal surface and the Resolution of the Field Ion Microscope, Phys. Rev.102, 624(1956)
[18]A.Lukaszewski, A. Szczepkowicz, Computer simulation of FIM images-the convex hull model, Vacuum 54, 67(1999)
[19]J.G. Che, C.T. Chan, C.H. Kuo, T.C. Leung, Faceting Induced by Ultrathin Metal Films: A First Principles Study, Physical Review Letters 79, 4230(1997)
[20]C.T. Chan, J.G. Che, T.C. Leung, First principles studies of overlayer-induced faceting, Surface Science 59, 1(1998)
[21]林榮君, 鉑的重構-皺化與失蹤原子列的觀察與研究, 國立台灣師範大學碩士論文(2005)
[22]蘇冠宇, 場離子顯微鏡研究(1)量測覆銥單原子針場發射與場離子電流(2)鈮(100)表面觀察 , 國立台灣師範大學碩士論文(2011)
[23]J.P.Ibe, P.P.Bey, S.L.Brandow, R.A.Brizzolara, N.A.Burnham, D.P.DiLella, K.P.Lee, Richard J Coltan, C.R.K.Marrian, On the electrochemical etching of tips for scanning tunneling microscopy, Journal of Vacuum Science & Technology A 8, 3570(1990)
[24]Gh. Tahmasebipour, Y. Hojjat, V. Ahmadi, A. Abdullah, Optimization of STM/FIM nanotip aspect ratio based on the Taguchi method, Scanning 31, 65(2009)
[25] H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.H. Lu, C.Y. Lin, T.T. Tsong, Gas field ion source from an Ir/W<111> single-atom tip, Applied Physics Letters 92, 063106(2008)
[26] S. Kalbitzer, A. Knoblauch, Physical processes in a super-tip gas field ion source, Applied Physics A 78, 269–281(2004)
[27] Y. Kobayashi, Y. Sugiyama, Y. Morikawa, K. Kajiwara, K. Hata, Experimental evaluation of the influence of shank shape of field ion emitter on the angular current density, Journal of Vacuum Science & Technology B 28, C2A90(2010)