簡易檢索 / 詳目顯示

研究生: 唐筱玫
Xiao Mei Tang
論文名稱: 磁粒子造影系統之架設與特性量測
The system construction and characteristic quantity of magneric particle imaging
指導教授: 洪姮娥
Horng, Herng-Er
楊鴻昌
Yang, Hong-Chang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 4
中文關鍵詞: 磁粒子梯度場強力磁鐵造影
英文關鍵詞: MPI
論文種類: 學術論文
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文「磁粒子造影系統之架設與特性量測」是由一對環形強力磁鐵來產生梯度場,和以激發線圈產生交流場,再由一組同心園接收線圈接收訊號所組成的架構,並且選用超順磁性(super-paramagnetic properties)磁奈米粒子(the magnetic nanoparticles)作為量測樣品[2]。磁鐵是以銣鐵硼(NdFeB)材料做成的兩個環形強力磁鐵(ring magnets),我們用壓克力板和銅螺桿固定磁鐵,以N極-N極相對的方式,並且測量在兩磁鐵中間的磁場分布,此磁場為梯度場(gradient)。且量測到磁鐵產生的橫向梯度場為dB⁄dx = dB⁄dy = 3.69 T/m,縱向梯度場為 dB⁄dz = 6.43 T/m [2]。然後實驗架構所需要的交流場是由一激發線圈產生的,經過量測後激發線圈的磁場可達到B = 30 mTpp[6]。再製作一組內外同心圓的接收線圈(receive coils)放在激發線圈內部,並且接收線圈是以反接的方式組成的。為了使接收線圈因激發線圈而產生的感應電流能夠相消的程度更好,再製作一相減電路把內外接收線圈的磁場作相減。

    關鍵字: 磁粒子、梯度場、強力磁鐵、造影、MPI 。

    關鍵字: 磁粒子、梯度場、強力磁鐵、MPI

    目錄 第一章 緒論…………………………………………………...…..….1 1-1 簡介…..……………………………..……...…………..…..1 1-2 研究動機與目的…………………………………….....…..3 第二章 實驗原理…………………………………...…….…………...5 2-1 磁粒子造影原理簡介……………………...………….…...5 第三章 實驗架構………………………………...……………...…….7 3-1 系統架構與實驗流程……………………………….……..7 3-2 環形磁鐵與梯度磁場量測………..……………...…...…..9 3-3 激發線圈設計與水冷系統…………………………..…...14 3-3.1 激發線圈特性量測…………………………...…...14 3-3.2 激發線圈與水冷系統的溫度量測………………..18 3-4 接收線圈………………………………………….....……23 3-4.1 相減電路……………………….……………….…24 3-4.2 接收線圈平衡度量測……..………………………26 3-5 樣品移動平台………………………..……………...……27 第四章 實驗結果與討論………..………………………………...…28 4-1 系統量測………………….………………………….…...28 4-1.1 解析度量測……………………………………..…33 第五章 結論……………………..………………………………..…36 參考文獻……………………………………………………………..37

    1.
    Gleich, B., & Weizenecker, J. (2005). “Tomographic imaging using the nonlinear response of magnetic particles.” Nature, 435(7046), 1214-1217.

    2.
    Goodwill, P. W., Scott, G. C., Stang, P. P., & Conolly, S. M. (2009). “Narrowband magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 28(8), 1231-1237.

    3.
    Goodwill, Patrick W., and Steven M. Conolly. "The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation." Medical Imaging, IEEE Transactions on 29.11 (2010): 1851-1859.

    4.
    Goodwill, P. W., Tamrazian, A., Croft, L. R., Lu, C. D., Johnson, E. M., Pidaparthi, R., ... & Conolly, S. M. (2011). “Ferrohydrodynamic relaxometry for magnetic particle imaging.” Applied Physics Letters, 98(26), 262502-262502.

    5.
    Goodwill, P. W., & Conolly, S. M. (2011). “Multidimensional x-space magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 30(9), 1581-1590.

    6.
    Goodwill, Patrick W., et al. "An x-space magnetic particle imaging scanner." Review of Scientific Instruments 83.3 (2012): 033708-033708.

    7.
    Kratz, H., Eberbeck, D., Wagner, S., Schnorr, J., & Taupitz, M. (2012). “Tracer Development for Magnetic Particle Imaging.“ In Magnetic Particle Imaging (pp. 123-127). Springer Berlin Heidelberg.

    8.
    Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., & Borgert, J. (2009). “Three-dimensional real-time in vivo magnetic particle imaging.” Physics in medicine and biology, 54(5), L1.

    9.
    Graeser, M., Biederer, S., Grüttner, M., Wojtczyk, H., Sattel, T. F., Tenner, W., ... & Buzug, T. M. (2012). “Determination of System Functions for Magnetic Particle Imaging. In Magnetic Particle Imaging (pp. 59-64).” Springer Berlin Heidelberg.

    10.
    Knopp, T., Sattel, T. F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “Model-based reconstruction for magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 29(1), 12-18.

    11.
    Knopp, T., Biederer, S., Sattel, T. F., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “2D model-based reconstruction for magnetic particle imaging.” Medical physics, 37, 485.

    12.
    Biederer, S., Sattel, T., Knopp, T., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., ... & Buzug, T. M. (2009, January). “A spectrometer for magnetic particle imaging.” In 4th European Conference of the International Federation for Medical and Biological Engineering (pp. 2313-2316). Springer Berlin Heidelberg.

    13.
    Rahmer, J., Weizenecker, J., Gleich, B., & Borgert, J. (2009). Signal encoding in magnetic particle imaging: properties of the system function. BMC medical imaging, 9(1), 4.

    14.
    顏雅侖,錳鋅鐵氧化物磁性流體之製備及分散研究,國立台灣成功大學資訊工程研究所碩士論文(2002)

    15.
    磁性奈米粒子於生物醫學上之應用,物理雙月刊(廿八卷四期)2006年8月692

    16.
    陳泂翰,磁流體交流磁化率隨頻率變化之研究,國立台灣師範大學光電科技研究所碩士論文(2009)

    17.
    氟去氧葡萄糖於正子斷層掃描偵測癌症之臨床應用. 2002.

    18.
    Li, A. H. (2007). “Using Infrared Thermal Image in the Evaluation of Carotid Stenosis” (Doctoral dissertation).

    19.
    Brody, W. R. (1982). “Digital subtraction angiography.” Nuclear Science, IEEE Transactions on, 29(3), 1176-1180.

    20.
    Gleich, B., Weizenecker, J., & Borgert, J. (2008). “Experimental results on fast 2D-encoded magnetic particle imaging.” Physics in medicine and biology, 53(6), N81.

    21.
    Bean, C. P., & Livingston, J. D. (1959). “Superparamagnetism. Journal of Applied Physics”, 30(4), S120-S129.

    22.
    郭俊良, 謝盛林, 張南富, & 刁偉民. (2008). 正子電腦斷層掃描於醫學影像使用的合理性 The Rationality of PET/CT Scan in Clinical Imaging. 台灣應用輻射與同位素雜誌, 4(1), 433-439.

    23.
    陳美真, 陳世杰, 林招膨, & 彭國權. (2010). 64 層切面電腦斷層冠狀動脈血管攝影之臨床輻射劑量評估. 台灣應用輻射與同位素雜誌, 6(2), 863-868.

    24.
    Edelman, R. R., & Warach, S. (1993). Magnetic resonance imaging. New England Journal of Medicine, 328(10), 708-716.

    25.
    "年極富創意的新型醫療器械" http://geraldinedao.mysinablog.com/trackback.php?id=2618385

    26.
    Bulte, J. W., Walczak, P., Gleich, B., Weizenecker, J., Markov, D. E., Aerts, H. C., ... & Kuhn, M. (2011, March). “MPI cell tracking: what can we learn from MRI?”. In SPIE Medical Imaging (pp. 79650Z-79650Z). International Society for Optics and Photonics.

    27.
    Bulte, J. W. M., WALCZAK, P., BERNARD, S., GLEICH, B., WEIZENECKER, J., BORGERT, J., ... & BOEVE, H. (2010). “Developing cellular MPI: initial experience.” In Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications: Proceedings of the First International Workshop on Magnetic Particle Imaging (p. 201). World Scientific.

    28.
    Wojtczyk, H., Haegele, J., Grüttner, M., Tenner, W., Bringout, G., Graeser, M., ... & Buzug, T. M. (2012). Visualization of Instruments in interventional Magnetic Particle Imaging (iMPI): A Simulation Study on SPIO Labelings. In Magnetic Particle Imaging (pp. 167-172). Springer Berlin Heidelberg.

    29.
    飛利浦公佈新醫療影像技術的重大突破( http://www.newscenter.philips.com/tw_zh/standard/about/news/press/2009/20090226.wpd )

    30.
    「醫學與生物學中的物理學」(Physics in Medicine and Biology)第 54 期(2009 年)的期刊。

    無法下載圖示 本全文未授權公開
    QR CODE