簡易檢索 / 詳目顯示

研究生: 林繼揚
論文名稱: 應用於77 GHz汽車防撞雷達系統之毫米波積體電路設計
Design of 77 GHz Millimeter-Wave Integrated Circuits for Anticollison Radar Applications
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 低雜訊放大器功率放大器雜訊指數收發機CMOS疊接組態
英文關鍵詞: Low Noise Amplifier, Power Amplifier, Noise Figure, transceiver, CMOS, Cascode
論文種類: 學術論文
相關次數: 點閱:361下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對77 GHz汽車防撞雷達微波CMOS射頻前端RFICs以及毫米波電路設計研究討論,晶片製作透過國家晶片中心提供的標準TSMC CMOS 90nm製程,內容分為兩個部分,第一個部分為介紹毫米波汽車防撞雷達研究背景,第二部分為毫米波CMOS RFICs之設計與量測。
    論文將介紹三個電路,第一個為低雜訊放大器,此設計頻率為71至77 GHz設計上採用三級串接,第一級為共源級組態,主要考量於低雜訊之訴求,第二級與第三級將採用疊接組態,疊接組態將提供高增益,來滿足系統所需之規格,本設計考量將在疊接組態之增益以及雜訊指數,利用中間匹配電感來設計,其電感可以使疊接組態之雜訊指數降低,並可以提高增益,本論文於第三章內容將作設計考量分析,而量測結果在74 GHz時有最小雜訊指數 6.17 dB,增益高達20 dB以上,晶片面積為0.596 ╳ 0.583 mm2。第二個電路為功率放大器,此設計操作頻率為71至77 GHz,設計考量於功率為重,因此在架構上選擇較大之電晶體,且採用疊接組態提高增益,量測結果於頻率71至77 GHz增益維持在20 dB,其晶片面積大小為0.596 ╳ 0.596mm2。第三部分為混頻器,採用環型混頻器架構,系統主要於低LO功率,以及低功率消耗,供應電壓為1.2 V,操作頻率在71至77 GHz,降頻混頻器之OP1dB發生在輸入RF功率為-3 dBm時有-0.5 dBm輸出功率。

    The subject is design of 77 GHz millimeter-wave integrated circuits for
    Anticollison radar applications. The presented low noise amplifier, power amplifier, down/up-conversion ring mixers are designed and fabricated on TSMC 90 nm 1P9M CMOS process. The Contents divide into two parts. The first part is the background of Millimeter-wave auticollision radar. The second part is simulation and measurement data.
    The paper presents three circuits. One is low noise amplifier. The LNA utilizes three-stage configuration amplifier. The first stage is common source due to small low noise figure. The second and third stages are cascade because of the high gain. The low noise amplifier is simulated at 71-77 GHz. Noise figure is 6.17 dB at frequency 74 GHz. The gain is 20 dB. The chip size is 0.596 ╳ 0.583 mm2. The second is power amplifier . the amplifier utilizes three-stage configuration and large size transistors to design. the result of gain measurement is 20 dB. The chip size is 0.596 ╳ 0.596 mm2. the final part is down/up-conversion ring mixers. The OP1dB of down-conversion mixer is -0.5 dBm @ -3 dBm.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖 目 錄 VII 第一章 雷達簡介 1 1.1汽車防撞雷達簡介 1 1.2論文架構 4 第二章 汽車防撞雷達射頻前端系統簡介 5 2.1 汽車防撞雷達射頻前端系統簡介[1] 5 第三章E BAND 低雜訊放大器 11 3.1 低雜訊放大器簡介 11 3.2 E BAND 共源級組態與疊接組態比較分析 13 3.2.1 共源級組態放大器電晶體尺寸選擇分析 13 3.2.2 疊接組態放大器分析 19 3.2.3 雜訊觀點分析 19 3.2.4 反射係數觀點分析 24 3.2.5 最佳疊接組態低雜訊放大器設計 28 3.3 三級串接放大器 34 3.3.1 匹配網路設計 36 3.4 偏壓電路設計考量 41 3.5 模擬結果 43 3.6 模擬與量測結果 45 3.7 結果與討論 49 第四章E BAND 功率放大器 57 4.1 功率放大器簡介 57 4.2 功率放大器電路設計 60 4.2.1 電晶體偏壓設計 60 4.2.2 共源級組態分析 61 4.2.3 疊接組態分析 63 4.2.4 共源級與疊接組態分析與比較 65 4.2.5 三級串接放大器 67 4.2.6 偏壓電路設計考量 69 4.2.7 匹配網路設計 70 4.3模擬結果 75 4.4模擬與量測結果 76 4.5 結果與討論 81 第五章 77 GHz汽車防撞雷達系統 83 5.1 雷達系統簡介 83 5.2 混頻器 84 5.2.1 混頻器設計考量 85 5.3 功率分配器 87 5.3.1 威爾生功率分配器設計 87 5.3.2 威爾生功率分配器模擬 88 5.4 收發器之模擬分析 89 第六章 結 論 97 參 考 文 獻 98

    [1] KAI CHANG “RF and Microwave Wireless System” , John Wiley & Sons, Inc. New York, USA
    [2] G. Gonzalez, “Microwave Transistor Amplifier-Analysis and Design, 2nd Ed.,” Prentice Hall,Inc., 1984
    [3] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.
    [4] 林益璋,V 頻帶CMOS低雜訊放大器設計與分析,國立臺灣師範大學應用電子科技所碩士論文,民國100年
    [5] T. Mitomo et al., “A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 246-247, June 2009.
    [6] Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1795–1798.
    [7] H. Samavati, H. R. Rategh, and T. -H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
    [8] B.-J. Huang, K.-Y Lin, and H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol.57, no.12, pp. 3049-3059, Dec. 2009.
    [9] C. Y. Wu; P. H. Chen “A Low Power V-band Low Noise Amplifier Using 0.13-μm CMOS Technology”. ICECS 2007. Dec. 2007 pp.1328 – 1331
    [10] Natsukari, Youhei; Fujishima, Minoru “36mW 63GHz CMOS differential low noise amplifier with 14GHz bandwidth,” VLSI Circuits, Aug.2009, pp. 252 – 253
    [11] M. Fahimnia, M.R. N.-Ahamadi, B. Biglarbeigian, S. S.-Naieni, M. M.-Taheri, and Y. Wang, "A 77 GHz low noise amplifier using low-cost 0.13μm CMOS technology," Microsystems and Nanoelectronics Research Conf., Oct. 2009, pp. 73 - 75.
    [12] R. Eye and D. Allen, "77 GHz low noise amplifier for automotive radar applications," IEEE Gallium Arsenide Integrated Circuit Symp., Nov. 2003, pp. 139 - 142.
    [13] Fahimnia, M. ; Safavi-Naieni, S. ; Mohammad-Taheri, M. ; Wang, Y. “A 77 GHz Controllable Gain Low Noise Amplifier,” Jul. 2010 pp. 96 – 99
    [14] Tung The Lam Nguyen ; Sung-Woon Moon ; Sung-Ho Jung ; Min Han ; Jin-Koo Rhee ; Sam Dong Kim, ” A W-band Cascaded Double-stage Distributed Low-noise Amplifier Using Feedback Transmission Line,” Mar. 201, pp. 382 – 385
    [15] N. Tanahashi, K. Kanaya, T. Matsuzuka, I. Katoh, Y. Notani, T. Ishida, T. Oku, T. Ishikawa, M. Komaru, and Y. Matsuda, “A W-band ultra low noise amplifier MMIC using GaAs PHEMT,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, pp. 2225, 2003.
    [16] Steve C. Cripps, “RF power amplifiers for wireless communications.” Artech House, 1999.
    [17] T. Y. Chang, C. S. Wang, and C. K. Wang, “A 77 GHz power amplifier using transformer-based power combiner in 90 nm CMOS,” IEEE Custom Integrated Circuits Conference, pp.1-4, Sept. 2010
    [18] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, “60 and 77GHz power amplifier in standard 90nm CMOS,” ISSCC Dig. Tech. Papers, pp.562-563, Feb. 2008.
    [19] Lee, J.; Chung-Chun Chen; Jen-Han Tsai; Kun-You Lin; Huei Wang, ”A 68-83 GHz Power Amplifier in 90 nm CMOS,” Microwave Symposium Digest, Jul. 2009, pp.437 - 440
    [20] J. L. Kuo, Z. M. Tsai, K. Y. Lin, and H. Wang, “A 50 to 70 GHz power amplifier Using 90 nm CMOS Technology,” IEEE Microw. and Wireless Compon. Lett., vol.19, no.1, pp.45-47, Jan. 2009.
    [21] Yu-Sian Jiang, Jeng-Han Tsai, and Huei Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 818-820, Dec. 2008. (SCI)
    [22] J.H. Tsai, “Design of 40-108-GHz Low Power and High-Speed CMOS Up/Down-Conversion Ring Mixer for Multistandard MMW Radio Applications” IEEE Transactions on Microware Theory and techniques, Vol.60, No.3, March 2012
    [23] D. M. Pozar, “Microwave Engineering”, John Wiley & Sons, 1998.
    [24] M. Khanpour, K.W. Tang, P. Garcia, and S. P. Voinigescu, “A Wideband W-Band Receiver Front-End in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, Vol.43, No.8, pp.1717-1730, August. 2008.
    [25] Nicolson, S.T. ; Yau, K.H.K. ; Pruvost, S. ; Danelon, V. ; Chevalier, P. ; Garcia, P. ; Chantre, A. ; Sautreuil, B. ; Voinigescu, S.P. ,”A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset,” Microwave Theory and Techniques, pp. 1092 – 1104 May 2008
    [26] S.T. Nicolson, P. Chevalier, A. Chantre, B. Sautreuil and S.P. Voinigescu, "A 77-79-GHz Doppler Radar Transceiver in Silicon," IEEE Compound Semiconductor Integrated Circuit Symposium, pp.1-4, 14-17 Oct. 2007
    [27] Babakhani, X. Guan, A. Komijani, A Natarajan, and A. Hajimiri, "A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas", IEEE Journal of Solid-State Circuits, vol. 41, No. 12, pp. 2795-2806, Dec. 2006. cited byother.
    [28] A. Natarajan "A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting", IEEE J. Solid-State Circuits, vol. 41, p.2807 , 2006.
    [29] J. Powell, H. Kim, and C.G. Sodini, "A 77-GHz Receiver Front End for Passive Imaging," IEEE Radio Frequency Integrated Circuits Symposium,pp.145-148, 3-5 June 2007
    [30] Kyoungwoon Kim ; Wooyeol Choi ; Sungwon Kim ; Gyungseon Seol ; Kwangseok Seo ; Youngwoo Kwon, “A 77 GHz Transceiver for Automotive Radar System Using a 120nm In0 4AlAs/In 35GaAs Metamorphic HEMTs,” Compound Semiconductor Integrated Circuit Symposium, pp. 201 – 204, Fre.2007
    [31] Y. Kawano et al., “A 77GHz Transceiver in 90nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 310-311, Feb. 2009.
    [32] Yi-An Li, Meng-Hsiung Hung, Shih-Jou Huang, Jri Lee: A fully integrated 77GHz
    FMCW radar system in 65nm CMOS. ISSCC 2010 pp.216-217
    [33] S. T. Nicolson, K A. Tang, K. H.K. Yau, P. Chevalier, B. Sautreuil, and S. P. Voinigescu,“A low-voltage 77-GHz automotive radar chipset,”in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, June 2007, pp.487-490.
    [34] S.T. Nicolson, K.H.K. Yau, S. Pruvost, V. Danelon, P. Chevalier, P. Garcia, A. Chantre, B. Sautreuil, and S.P. Voinigescu, “A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset,“ IEEE Trans. MTT, Vol.56, pp. 1092-1104, May 2008.
    [35] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, "A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars," IEEE J. of Solid-State Circuits, vol. 44, pp. 3469-3485, Dec. 2009.
    [36] Li Wang, Glisic, S., Borngraeber, J., Winkler, W., Scheytt, J.C., "A Single-Ended Fully Integrated SiGe 77/79 GHz Receiver for Automotive Radar", Solid-State Circuits, IEEE Journal pp.1897 - 1908, Volume: 43 Issue: 9, Sept. 2008
    [37] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no.10, pp. 2075–2085, Oct. 2007

    下載圖示
    QR CODE