研究生: |
洪楷翔 Kai-Hsiang Hung |
---|---|
論文名稱: |
用於年長者居家跌倒偵測系統設計 Design of Elder Fall Detection System for Homecare |
指導教授: |
曾煥雯
Tzeng, Huan-Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 小波轉換 、專家系統 、積函數 |
英文關鍵詞: | DWT, Expert System, Energy Product |
論文種類: | 學術論文 |
相關次數: | 點閱:237 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於獨居老人來說跌倒是一項嚴重的傷害,本研究的目的即在使用可穿戴式的加速度感測器及固定式的壓力感測器偵測老年人於行動時發生跌倒情況來進行研究。本研究結合地板壓力感測、加速度感測以及小波轉換可精確的偵測老年人跌倒。
小波轉換為近年來相當熱門的研究題目之一,小波定理提供了統一的架構給許多不同的訊號處理應用領域。目前小波轉換已廣泛地應用在通信系統,信號處理,影像和音訊處理等不同的研究領域。
本研究參考訊號相關之論文,並提出的以小波轉換搭配積函數的演算法為基礎作跌倒判斷,積函數是由信號經由小波轉換後產生的一低頻訊號和高頻訊號取絕對值相乘所得,此積函數能將一般運動的訊號衰減並突顯跌倒瞬間之能量,再加上新的訊號分割點判斷演算法並結合專家系統綜合推理,與傳統方法相較之下,本論文所提的判斷分割點的演算法可提昇判斷跌倒的準確度。
Unintentional falls are a common cause of severe injury in the elderly population. This research presents a wearable micro-sensing device worn on the waist and a network of fixed motes in the home environment for detecting human body falls because of stroke or elder movement. It combines micro-sensors and digital data processing technologies and wavelet transform. We can detect the occurrence of a fall.
The wavelet transform is one of the most exciting developments of the last decade. Wavelet theory provides a unified framework for a number of techniques that had been developed independently for various signal-processing applications.
This thesis makes use of wavelet transform and energy profile to indicate the segmentation point of signal and is no need to set any predetermined threshold. The product function is generated from the appropriate wavelet and scaling coefficients of input signal, and it can be applied to indicate the segmentation point. With this product function, expert system and the additional verification of energy profile, the segmentation point can be accurately to detect falls with a low computation complexity.
[1] 朱育秀,“曾跌倒老年人、不曾跌倒老年人與年輕人多方向自主性跨步動作控制之比較”,台灣大學物理治療學研究所,2000。
[2] 葉兆斌,“跌倒的流行病學分析”,中山醫學大學,碩士論文,2001。
[3] Chen, J. , Kwong, K. ,Chang, D. , Luk, J. ,Bajcsy R.,“Wearable Sensors for Reliable Fall Detection”, Engineering in Medicine and Biology Society,October 11,2005, pp. 3551-3554.
[4] Seon Woo Lee, Kenji Mase, “Activity and location recognition using wearable Sensor” , Pervasive Computing, 2002 pp. 24-32.
[5] 鐘志裕,楊明興,“應用FPGA 與遠端技術之獨居老人安全監測系統”,成功大學電機工程研究所,碩士論文,2003。
[6] 徐銘鴻,“曾作過可攜式生理訊號擷取及傳輸系統之以PDA 為平台之研究”長庚大學電機研究所,碩士論文,2001。
[7] 孟立凡,鄭賓主,感測器原理及技術,國防工業出版社,2005.1。
[8] 劉佑成,“智慧型居家照護系統”,國立台灣師範大學工業教育學系,碩士論文,2006。
[9] 鄭才新,“電機實驗之嵌入式專家系統設計與實現”,國立台灣師範大學工業教育學系,碩士論文,2006。
[10] Chen Shi-Huang, Wang Jhing-Fa, “Extraction of pitch information in noisy speech using wavelet transform with aliasing compensation”, Speech and Audio Processing, 7-12 May 2001, Volume 1 pp.89-92.
[11] Chen Shi-Huang, Wang Jhing-Fa, “A wavelet-based voice activity detection algorithm in noisy environments”, Electrics Circuits and Systems, 15-18 Sept. 2002, Volume 3 pp.995-998.
[12] Chen Shi-Huang, Wang Jhing-Fa, “A C/V segmentation algorithm for Mandarin speech signal based on wavelet transforms”, Acoustics, Speech, and Signal Processing, 15-19 March 1999, Volume 1 pp.417-420.
[13] Sixsmith, A., Johnson, N., “A smart sensor to detect the falls of the elderly”, Pervasive Computing, IEEE, April-June 2004, Volume 3 pp.42-47.
[14] T. Zhang, J. Wang, P. Liu and J. Hou, “Fall Detection by Embedding an Accelerometer in Cellphone and Using KFD Algorithm”, IJCSNS International Journal of Computer Science and Network Security, vol.6 no.10, pp.277-284 October 2006.
[15] M. Greiffenhagen, D. Comaniciu, H. Neimann, and V. Ramesh, “Design analysis, and engineering of video monitoring system: an approach and a case study,” Proc. of IEEE, vol. 89, no. 10, pp. 1498-1517, Oct. 2001.
[16] F. R. Allen, E. Ambikairajah, N.H. Lovell and B.G. Celler, “An Adapted Gaussian Mixture Model Approach to Accelerometry-Based Movement Classification Using Time-Domain Features”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug. 30 Sept. 3 2006 pp.3600-3603.
[17] C. Rougier, J. Meunier, A. St-Arnaud and J. Rousseau, “Monocular 3D Head Tracking to Detect Falls of Elderly People”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug. 30 Sept. 3 2006 pp.6384-6387.
[18] 宋佩栩,一個使用環場攝影機並結合個人資訊的客製化跌倒偵測系統,中原大學電子工程系碩士論文,民國95年。
[19] Chang Chia-Min., Juang Chia-Feng, “Human Body Posture Classification By Neural Fuzzy Network ”, System Man and Cybernetics, Part A, IEEE Transcations on,Nov. 11,2007, pp. 984-994.
[20] Sixsmith, A., Johnson, N., “A smart sensor to detect the falls of the elderly”, Pervasive Computing, IEEE, April-June 2004, Volume 3 pp.42-47.