簡易檢索 / 詳目顯示

研究生: 林冠宇
Lin, Kuan-Yu
論文名稱: 應用位渦反演探討莫拉克颱風(2009)的結構對台灣降水之影響
A study on the impact of the structure of Typhoon Morakot (2009) on its rainfall in Taiwan through the application of potential vorticity inversion
指導教授: 王重傑
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 132
中文關鍵詞: 莫拉克颱風片段位渦反演颱風外圍環流雲解析模式
DOI URL: https://doi.org/10.6345/NTNU202202543
論文種類: 學術論文
相關次數: 點閱:217下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對莫拉克颱風(2009)的環流結構對台灣降水之貢獻作探討,藉由片段位渦反演的方法,改變颱風伴隨的位渦擾動場與環流等。其中改變的方式有(1)調整環流大小、(2)改變環流強度、(3)改變外圍環流強度等三種,共8項結構調整之組合。調整後,使用雲解析風暴模式(Cloud-Resolving Storm Simulator,簡稱CReSS)進行控制模擬與敏感度測試實驗,以進一步探討不同的颱風環流結構對於台灣降水之影響為何?模擬結果顯示,颱風環流未作任何調整之控制實驗,不論路徑、移動速度、颱風強度變化或降雨情形,都與觀測相近。至於其他各項環流的改變,調整(減弱)越多的實驗中,西南氣流可以越早影響台灣,與颱風環流的輻合區越為偏北,不僅造成中南部山區強降雨提早發生,也會延長登陸期間的時間。這些實驗中登陸期間全台各地降水增多,而離陸階段的時間則會縮短,使得南部山區降水減少,此與莫拉克颱風實際的降雨集中於南部山區的特徵有所不同。另外,在調整(減弱)越多的實驗中,颱風在實驗初期內縮增強的現象也會越明顯,此役反應造成靠近颱風中心的降雨增加。
    其中,比較降水較強的兩個時段(登陸期間以及離陸階段)之累積雨量,環流調整(減弱)較少的實驗中,降雨型態與控制實驗差異不大。但外圍環流強度減得較弱的實驗,其降雨型態則與控制實驗有明顯不同,強降水區的降雨會比控制實驗減少16%,但台灣全區的平均累積雨量則增加10%以上。此一改變可以說明,颱風外圍環流對台灣南部山區的強降水有顯著的貢獻,因此,若莫拉克颱風外圍環流的強度較實際為弱,則台灣南部山區的災害可能因此而減少。

    致謝 Ⅰ 摘要 Ⅱ 目錄 Ⅲ 圖表目錄 Ⅴ 第一章 前言 1 1.1 文獻回顧 1 1.2 研究動機 4 1.3 論文架構 5 第二章 資料來源與研究方法 6 2.1 資料來源 6 2.2 片段位渦反演 7 2.3 實驗設計 8 2.4 模式介紹 11 2.5 模式設定 13 第三章 控制實驗與觀測之比對 15 3.1 路徑與強度 15 3.2 雨帶分佈與降雨 16 第四章 敏感度測試 19 4.1 環流大小 19 4.2 環流強度 23 4.3 外圍環流強度 26 第五章 討論 30 5.1 初始時間之選擇 30 5.2 各敏感度測試之異同 31 5.3 內縮增強與路徑打轉 32 第六章 結論 35 參考文獻 37 附圖 42

    郭鴻基,林李耀,蘇世顥,陳郁涵,徐理寰,楊憶婷,2015:氣候變遷-台灣颱風豪雨解謎,自然科學簡訊第27卷第1期

    黃清勇,趙子瑩2013:西南季風對莫拉克颱風降雨模擬之影響,大氣科學期刊第42期第1號,p91-116.

    Chen, T.-C., and Coauthors, 2010: The characteristics of radar-observed mesoscale rainbands of Typhoon Morakot (in Chinese). Scientific report on Typhoon Morakot (2009), H.-H. Hsu et al., Eds., National Science Council, 53–81.

    Chen, Y.-H., Wang, C.-C., Kuo, H.-C., Y.-T. Yang, 2017:Influence of Southwest Monsoon Flow and Typhoon Track on Taiwan Rainfall during Exit Phase: Modeling Study of Typhoon Morakot (2009). PhD dissertation,Department of Atmospheric Sciences, National Taiwan University,40.

    Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.

    Cotton, W. R., G. J. Tripoli, R. M. Rauber and E. A. Mulvihill, 1986: Numerical
    simulation of the effects of varying ice crystal nucleation rates and aggregation
    processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.

    Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929- 1953.

    Davis, C. A., 1992a: A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed cyclogenesis. Mon. Wea. Rev., 120, 2409–2428.

    Davis, C. A., 1992b: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.

    Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633.

    Ge, X., T. Li, S. Zhang, and M. S. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 46–50.

    Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and diagnosis of Typhoon Morakot (2009) using the Naval Research Laboratory’s mesoscale tropical cyclone model. Terr. Atmos. Oceanic Sci., 22, 579–594.

    Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in southern Taiwan. Geophys. Res. Lett., 37, L08805.

    Huang, H. L., M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112–129.

    Hsu, H.-H., and Coauthors, Eds., 2010: Scientific report on Typhoon Morakot (2009) (in Chinese). National Science Council, 192 pp.

    Hsu, L.‐H., H.‐C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci.

    Ikawa, M. and K. Saito, 1991: Description of a nonhydrostatic model developed at the
    Forecast Research Department of the MRI. Technical Report of the MRI, 28,
    238pp.

    Jou, B. J.-D., C.-S. Lee, M.-D. Cheng, L. Feng, and Y.-C. Yu, 2010: Analysis on the synoptic environment and rainfall characteristics of Typhoon Morakot (in Chinese). Scientific report on Typhoon Morakot (2009), H.-H. Hsu et al., Eds., National Science Council, 1–26.

    Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional
    convective storm dynamics, J. Atmos. Sci., 35, 1070–1096.

    Kuo, H.-C., Y.-T. Yang, and C.-P. Chang, 2010: Typhoon Morakot (2009): Interplay of southwest monsoon, terrain, and mesoscale convection. Int. Workshop on Typhoon Morakot (2009), Taipei, Taiwan, National Science Council and National Applied Research Laboratories, 55–73.

    Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 2222–2235.

    Lin, Y. L., R. D. Farley and H. D. Orville, 1983: Bulk parameterization of the snow
    field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Mellor, G., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.

    Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud - The 19 July 1981 CCOPE cloud. J. Meteor.
    Soc. Japan, 68, 107–128.

    Murakami, M., T. L. Clark and W. D. Hall 1994: Numerical simulations of convective
    snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer
    development and convective snow cloud formation. J. Meteor. Soc. Japan, 72,
    43–62.

    Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463–1491.

    Segami, A., K. Kurihara, H. Nakamura, M. Ueno and I. Takano, 1989: Description of Japan Spectral Model, JMA/NPD Technical Reports, No.25, Japan Meteor. Agency.

    Tsai ,Y-C, Y.-C. Liou , T.-C. Chen,2012: The precipitation characteristics in typhoon Morakot(2009) over Taiwan’s complex terrain revealed by polarimetric/multiple Doppler radar .master,Department of Atmospheric Science, College of Earth Science, National Central University,83.

    Tsuboki, K. and A. Sakakibara, 2001: CReSS User’s Guide 2nd Edition, 210p.

    Wang, B. and Z. Fan, 1999: Choice of South Asian Summer Monsoon indices, Bull. Amer. Meteor. Soc., 80, 629-638.

    Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196.

    Wang, C.-C., Kuo, H.-C., Johnson, R. H., Lee, C.-Y., Huang, S.-Y., and Chen, Y.-H.,2015: A numerical study of convection in rainbands of Typhoon Morakot (2009) with extreme rainfall: roles of pressure perturbations with low-level wind maxima, Atmos. Chem. Phys., 15, 11097-11115.

    Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.

    Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208–2221.

    Yu, C.-K., and L.-W. Cheng, 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 2894–2915.

    下載圖示
    QR CODE