簡易檢索 / 詳目顯示

研究生: 林哲群
J.-C. Lin
論文名稱: 陡峭次臨界斜率穿隧電晶體研究:異質穿隧、方向性選擇、鐵電負電容閘極
Steep Subthreshold Slope Tunnel Field-Effect Transistor:Hetero-Tunneling, Orientation Effect and Ferroelectric Negative Capacitance Gate Stack
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 穿隧電晶體
英文關鍵詞: Tunnel-FET
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今工業界正朝著「微小化」的趨勢向前邁進,而奈米技術正是電子元件及電機系統未來繼續發展的基礎,因此從巨觀的元件演變到奈米電子元件是非常關鍵的過程,尤其是現今的45奈米甚至是22奈米世代更顯重要,原因為元件微小化的優點使性能提升及降低消耗功率,也就是說VDD降低,但當scaling到VT不能再小時勢必也造成VDD無法再小,問題就是發生在傳統MOSFET的次臨界擺幅(subthreshold swing, S.S.)最小的物理極限為60 mV/dec.,故若能發展新型元件且subthreshold swing低於60 mV/dec,便可解決此問題。而穿隧場效電晶體(Tunnel-FET)渴望為此問題找到解答,當p/i/n操作在負偏壓(reverse bias)時,可以利用能帶間穿隧(Band-to-Band Tunneling, BTBT),將subthreshold swing降到60 mV/dec以下。
    本論文研究發展陡峭次臨界斜率穿隧電晶體研究:異質穿隧、方向性選擇、鐵電負電容閘極,成功證明epi-Ge Hetero-Tunnel FET在VGS -VBTBT =VDS = -3V有高達20 A/m的汲極電流,和S.S.min = 42mV/dec.。有epi-Ge製程在Si上的HTFET在IDS、S.S.、DIBT的表現皆優於Si的HTFET。即利用Ge能隙較小的觀念造成有效能帶(effective bandgap)降低,進而提高穿隧機率。也成功利用鐵電材料的負電容特性來改善epi-Ge HTFET的性能,如S.S.min、Gm和電流皆有達到效果。現今的epi-Ge/Si HTFET能夠整合目前CMOS製程,因此,為下一世代電晶體發展的選擇之一。

    The happy scaling of classic FET has been finished, as strain engineering technology for 90 nm, and gate stack ( high-K + metal gate ) for 45 nm technology node. Intel claimed that the 3D structure of tri-gate is mainstream in 22nm technology node, this is an important revolution for planar transistor in past 40 years. The possible candidates of the trend to achieve the future technology are FinFET, Ge/III-V, nanowire, graphene…etc. In order to More Moore’s Law, we have to the capability of New concept => operation mechanism, New material => channel material, and New structure => 3D for next generation devices. Tunnel-FETs (tFETs) operates with band-to-band tunneling current that change with the channel potential more abruptly than thermionic emission current.
    In this paper, we will research the Steep Subthreshold Slope Tunnel Field-Effect Transistor:Hetero-Tunneling, Orientation Effect and Ferroelectric Negative Capacitance Gate Stack. we have successfully demonstrated the first epi-Ge/Si hetero-tunnel FET with high current and < 60 mV/dec swing on (100), (110), and (111) orientations. The drain current of epi-Ge (100) HTFET is as high as 20 A/m(VGS-VBTBT = VDS = -3V), as well as excellent subthreshold swing (S.S.min = 42 mV/dec) and DIBT (28 mV/V). The epi-Ge HTFET is superior to the Si in terms of IDS, subthreshold swing and DIBT. Because, it is beneficial tunneling probability with BTBT current increasing by using band engineering design with heterojunction to narrow effective bandgap. The epi-Ge/Si HTFETs are compatible with current CMOS processes and are therefore a candidate for next-generation applications.

    Publication List …………………………………………………………………I 中文摘要 ………………………………………………………………………II Abstract ………………………………………………………………………III 致謝 …………………………………………………………………………IV 目錄 …………………………………………………………………………VI 圖目錄 ………………………………………………………………………IX 表目錄 ………………………………………………………………………XX 第一章 緒論 1. 穿隧機制電晶體 …………………………………………………………1 1-1 電晶體操作機制New concept ……………………………………2 1-2 電晶體材料New material …………………………………………4 1-3 電晶體結構New structure …………………………………………5 第二章 穿隧機制電晶體原理及製作 2-1 前言 ……………………………………………………………………7 2-2 文獻回顧 ………………………………………………………………11 2-3 元件操作原理 …………………………………………………………19 2-4 元件製作流程與設計 …………………………………………………24 第三章 異質穿隧場效電晶體 3-1 實驗動機 ………………………………………………………………31 3-2 TEM、C-V和Dit量測分析 ……………………………………………32 3-3 epi-Ge/Si HTFET在Si(100)方向的電性量測及分析 ………………34 3-4 epi-Ge/Si HTFET在Si(100)方向的變溫電性量測及分析 …………36 3-5 穿隧機制分析 …………………………………………………………37 3-6 結果與討論 ……………………………………………………………41 第四章 異質穿隧場效電晶體之方向性選擇 4-1 實驗動機 ………………………………………………………………42 4-2 TEM、C-V和Dit量測分析 ……………………………………………43 4-3 epi-Ge/Si HTFET在不同方向性的電性量測及分析 ………………45 4-4 epi-Ge/Si HTFET在不同方向性的cumulative probability ……………48 4-5 epi-Ge/Si HTFET在Si(100)方向的變溫電性量測及分析 …………50 4-6 穿隧機制分析 …………………………………………………………51 4-7 結果與討論 ……………………………………………………………53 第五章 鐵電負電容異質穿隧場效電晶體 5-1 實驗動機 ………………………………………………………………56 5-2 TEM、C-V和Dit量測分析 ……………………………………………57 5-3 epi-Ge/Si HTFET在Si(110)方向的電性量測及分析 ………………60 5-4 鐵電負電容量測與分析 ………………………………………………61 5-5 epi-Ge HTFET在有無堆疊NC的電性量測及分析 …………………64 5-6 epi-Ge HTFET在有無堆疊NC的模擬 ………………………………67 5-7 epi-Ge NC-HTFET結論 ………………………………………………68 第六章 結論與未來工作 6-1 綜合討論 ………………………………………………………………69 6-2 未來工作 ………………………………………………………………70 參考文獻 …………………………………………………………………74 附錄 …………………………………………………………………………80

    [1] F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance, ” in IEDM Tech. Dig., pp. 163-166, 2008.
    [2] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and <60mV/dec Subthreshold Slope, ” in IEDM Tech. Dig., pp. 947-949, 2008.
    [3] C. Hu, “Green Transistor as a Solution to the IC PowerCrisis, ” ICSICT, pp. 16-20 (2008).
    [4] A. Bowonder, P. Patel, K. Jeon, J. Oh, P. Majhi, H.-H. Tseng, and C. Hu, “Low-Voltage Green Transistor Using Ultra Shallow Junction and Hetero-Tunneling, ” IWJT, pp. 93-96 (2008).
    [5] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green Transistor -A VDD Scaling Path for Future Low Power ICs, ” VLSI-TSA, pp. 14-15, 2008.
    [6] A. Bowonder, P. Patel, K. Jeon, J. Oh, P. Majhi, H.-H. Tseng, and C. Hu, “Low-Voltage Green Transistor Using Hetero-Tunneling, ” SNW, p. 1, 2008.
    [7] C. Hu, “Reduce IC Power Consumption by >10x with a Green Transistor?, ”DRC, pp. 9-10, 2009.
    [8] C. Hu, P. Patel, A. Bowonder, K. Jeon, S. H. Kim, W. Y. Loh, C. Y. Kang, J. Oh, P. Majhi, A. Javey, T.-J. K. Liu, and R. Jammy, “Prospect of Tunneling Green Transistor for 0.1V CMOS, ” in IEDM Tech. Dig., pp. 387-390, 2010.
    [9] T. Krishnamohan, D. Kim, T. Viet Dinh, A. Pham, B. Meinerzhagen, C. Jungemann, and K. Saraswat, “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage, ” in IEDM Tech. Dig., pp. 947-950, 2008.
    [10] K. K. Bhuwalka, J. Schulze, and I. Eisele, “Performance Enahncement of Vertical Tunnel Field-Effect Transistor with SiGe in the p+ Layer, ” Japn. J. of Appl. Phys., vol. 43, no. 7A, pp. 4073-4078, 2004.
    [11] O. M. Nayfeh, C. N. Chleirigh, J. L. Hoyt, and D. A. Antoniadis, “Measurement of Enhanced Gate-Controlled Band-to-Band Tunneling in Highly Strained Silicon-Germanium Diodes, ” IEEE Electron Device Letter, vol. 29, no. 5, pp. 468-470, 2008.
    [12] C.-Y. Peng, F. Yuan, C.-Y. Yu, P.-S. Kuo, M. H. Lee, S. Maikap, C.-H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys Lett., vol. 90, 012114, 2007.
    [13] S. Maikap, M. H. Lee, S. T. Chang, and C. W. Liu, “Characteristics of strained-germanium p- and n-channel field effect transistors on Si (111) substrate,” Semicond. Sci. Technol., vol. 22, pp. 342-347, 2007.
    [14] M. H. Lee, S. T. Chang, S. Maikap, C.-Y. Peng, and C.-H Lee, “High Ge Content of SiGe Channel p-MOSFETs on Si (110) Surfaces, ” IEEE Electron Device Lett., vol. 31, no. 2, pp. 141- 143, 2010.
    [15] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving Current Enhancement of Strained Ge (110) p-type Tunnel FETs and Anisotropic Effect, ” IEEE Electron Device Letter, vol. 32, no. 10, pp. 1355-1357, 2011.
    [16] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF, ” in VLSI Symp. Tech. Dig., pp. 178-179, 2009.
    [17] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, and C. Hu, “Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing, ” in VLSI Symp. Tech. Dig., pp. 121-122, 2010.
    [18] W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park, and B.-G. Park, “70-nm Impact-Ionization Metal-Oxide-Semiconductor (I-MOS) Devices Integrated with Tunneling Field-Effect Transistors (TFETs), ” in IEDM Tech. Dig., pp. 955-958, 2005.
    [19] A. Villalon, C. Le Royer, M. Casse, D. Cooper, B. Previtali, C. Tabone, J.-M. Hartmann, P. Perreau, P. Rivallin, J.-F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot, and T. Poiroux, “Strained Tunnel FETs with record ION: First Demonstration of ETSOI TFETs with SiGe channel and RSD, ” in VLSI Symp. Tech. Dig., pp. 49-50, 2012.
    [20] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescuet, ”Metal-Ferroelectric-Meta-Oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification, ” in IEDM Tech. Dig., p. 395, 2010.
    [21] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.
    [22] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh, and S. Salahuddin, ”Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures, ” Appl. Phys. Lett., vol. 99, 113501, 2011.
    [23] J. Muller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, and T. Mikolajick, ”Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, ” in VLSI Symp. Tech. Dig., p. 25, 2012.
    [24] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [25] H.-S. Philip Wang, “Introduction and Overview” in “VLSI Technology Beyond 14 nm Node, ” IEEE IEDM short course, Dec. 4, 2011.
    [26] A. Chen, “Nanoelectronic Device Research for beyond-CMOS Technologies” in “Emerging Technologies for the post 14nm Node Area, ” IEEE IEDM short course, Dec. 8, 2012.
    [27] E. Takeda, H. Matsuoka, Y. Jgura, and S. Asai, “A Band to band Tunneling MOS Device (B2T-MOSFET) – A Kind of “Si Quantum Device, ” in IEDM Tech. Dig., pp. 402-405, 1988.
    [28] M. Takayanagi, S. Iwabuchi, T. Kobori, and T. Wada, “A New Band-to-Band Tunneling Model for Accurate Device Simulation of Si MOSFETs, ” in IEDM Tech. Dig., pp. 311-314, 1989.
    [29] M Sterkel, P-FWang, T Nirschl, B Fabel, K K Bhuwalka, J Schulze, I Eisele, D Schmitt-Landsiede ,and W Hansch, “Characteristics and Optimization of Vertical and Planar Tunneling-FETs, ” Journal of Physics: Conference Series 10, pp. 15–18, 2005.
    [30] M. Born, K. K. Bhuwalka, M. Schindler, U. Abelein, M. Schmidt, T. Sulima, and I. Eisele, “Tunnel FET: A CMOS Device for High Temperature Applications, ” in Proc. 25th Int. Conf. Microelectron., pp. 124-127, 2006.
    [31] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. D. Gendt, M. M. Heyns, and G. Groeseneken, “Performance Enhancement in Multi Gate Tunneling Field Effect Transistors by Scaling the Fin-Width, ” Jpn. J. Appl. Phys. 49 (2010)
    [32] Q. Huang, Z. Zhan, R. Huang, X. Mao, L. Zhang, Y. Qiu and Y. Wang, “Self-Depleted T-gate Schottky Barrier Tunneling FET with Low Average Subthreshold Slope and High ION/IOFF by Gate Configuration and Barrier Modulation, ” in IEDM Tech. Dig., pp. 382-385, 2011.
    [33] Q. Huang, R. Huang, Z. Zhan, Y. Qiu, W. Jiang, C. Wu and Y. Wang, “A Novel Si Tunnel FET with 36mV/dec Subthreshold Slope Based on Junction Depleted-Modulation through Striped Gate Configuration, ” in IEDM Tech. Dig., pp. 187-190, 2012.
    [34] S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons, Inc., 1981.
    [35] J. Moll, “Physics of Semiconductors” McGraw-Hill, New York, p. 253, 1964.
    [36] A. Seabaugh, “Tunnel Field-Effect Transistor – Engineer a Better Switch” in “VLSI Technology Beyond 14 nm Node, ” IEEE IEDM short course, Dec. 4, 2011.
    [37] S.M. Sze, “Physics of Semiconductor Devices,” John Wiley & Sons, Ltd, p. 258, 1981.
    [38] P. Butcher, K. Hulme, and J. Morgan, “Dependence of peak current density on acceptor concentration in germanium tunnel diodes, ” Solid-State Electron., vol.5, no.5, pp. 358-360, 1962.
    [39] K. K. Bhuwalka, J. Schulze, and I. Eisele, “A Simulation Approach to Optimize the Electrical Parameters of a Vertical Tunnel FET, ” IEEE Trans. on Electron Device, vol. 52, no. 7, pp. 1541-1547, 2005.
    [40] “The semiconductor wiki project” http://www.semiwiki.com

    無法下載圖示 本全文未授權公開
    QR CODE