簡易檢索 / 詳目顯示

研究生: 邱柏融
Chiu Po-Jung
論文名稱: 建模教學對國小五年級學生酸鹼心智模式改變之探究
Modeling teaching to inquisition of the elementary school fifth grade student acid and alkali mental model change
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 171
中文關鍵詞: 建模教學心智模式酸鹼概念概念改變
英文關鍵詞: modeling teaching, mental model, acid and alkali conception, conceptual change
論文種類: 學術論文
相關次數: 點閱:211下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究由概念改變的觀點出發,探討建模教學對國小五年級學生酸鹼心智模式之改變。本研究針對國小階段的酸鹼概念,設計適合國小階段的建模教學方案,並發展酸鹼概念二階層診斷式問卷。透過晤談與問卷收集資料,分析並整理出國小五年級學生所持有的酸鹼心智模式,並由此得知國小學生經過建模教學後期心智模式的改變。
    本研究共晤談了19位國小五年級的學生,並使用酸鹼概念二階層診斷式問卷,共調查了實驗組( 建模教學組 )與對照組( 一般教學組 )各50位學生。研究發現國小五年級學生在酸與鹼的意義及其性質之心智模式主要有:1.現象模式( 38% );2.關鍵字模式( 23% );3.推論模式( 36% );4.微觀結構模式( 36% );5.微觀粒子模式( 34% )。在酸鹼中和的部份,本研究在教學前所發現的有1.酸鹼並存模式1( 33% );酸鹼並存模式2( 17% );3.抵銷模式( 41% )。在酸鹼指示劑部分,本研究則發現特定顏色模式( 29% )與科學模式( 65% )。
    在教學上,本研究亦發現,不論是建模教學組或是一般教學組,在教學後這些心智模式均仍有出現,但其分布的情況就有所差異。在酸與鹼的意義及其性質上,在教學後,兩組的關鍵字模式均明顯下降,建模教學組的學生主要轉移到推論模式;而一般教學組則主要轉移到現象模式。在酸鹼中和部份,建模教學組與一般教學組之酸鹼並存模式均明顯下降,一般教學組主要轉移到抵銷模式;而建模教學組的學生除了轉移到抵銷模式之外,有38%的學生可以達到筆者所設計的科學模式。可見本研究所設計之建模教學雖然不能完全的把所有的學生建構出正確的科學模式,但大部分的學生已經能有效的修改既有的心智模式,以接近科學模式。
    本研究接受建模教學之學生在後測表現與前測表現間具有顯著差異。顯示藉由建模教學活動,國小學生已經可以接受微觀模式的教學,甚至透過視覺與動作表徵的建模方式,修改學生原有的心智模式。本研究結果也呼應了Maskill & Cachapuz ( 1997 )的研究,國小高年級學生是可以有效的學習微觀概念的科學知識。

    Modeling teaching to inquisition of the elementary school fifth grade student acid and alkali mental model change

    Abstract

    This study embarks by the conceptual change's viewpoint, discussion modeling teaching to change of the elementary school fifth grade student acid and alkali mental model. This study in view of the elementary school stage's acid and alkali concept, the design suits the elementary school stage the modeling teaching plan, and develops the acid and alkali concept two tier diagnosis type questionnaire. By interview with the questionnaire collection material, analyzes and reorganizes goes abroad the acid and alkali mental model which the fifth-grade student has, and knows the country elementary students from this after the modeling teaching later period the mental model change.

    This study altogether interviewed 19 elementary school fifth grade student, and uses the acid and alkali concept two tier diagnosis type questionnaire, altogether investigated the experimental group (modeling teaching group) and the control group (common teaching group) each 50 students. The study discovered that the elementary school fifth grade student the mental model mainly has in the acid and the alkali significance and the nature: 1. phenomenon model (38%); 2. key words model (23%); 3. deduction model (36%); 4. microscopic structure model (36%); 5. micro-particle model (34%). In the acid and alkali neutral part, this study has 1. acid and alkali coexisting model which discovered before the teaching 1 (33%); Acid and alkali coexisting model 2 (17%); 3. offsets the model (41%). In the acid-base indicator part, this study discovers the specific color model (29%) and the scientific model (65%).

    In the teaching, this study also discovered that no matter is the modeling teaching group perhaps the common teaching group, after the teaching these mental models still had the appearance, but its distributed situation has a difference. In acid and in alkali significance and nature, after the teaching, two groups of key words models obviously drop, the modeling teaching group's students mainly shift to the deduction model; But the common teaching group mainly shifts to the phenomenon model. In the acid and alkali neutral part, acid and alkali of coexisting model the modeling teaching group and the common teaching group of obviously drops, generally the teaching group mainly shifts to offsets the model; But the modeling teaching group's students besides shift to offset the model, some 38% student may achieve the scientific model which the author designs. Obviously although modeling of teaching this study institute design cannot complete construct all students the correct scientific model, but the majority of students already could effective revision already some mental models, by the close scientific model.

    This study accepts student of the modeling teaching after measured that the performance with first measured the performance has the remarkable difference. The demonstration because of the modeling teaching activity, the country elementary students already might accept the microscopic model the teaching, even penetrates visual and the movement attribute modeling way, revises the student original mental model. This findings have also echoed Maskill & Cachapuz (1997) the study, the elementary school fifth grade student is may the effective study microscopic concept scientific knowledge.

    目錄 第壹章 緒論 第一節 研究背景與動機………………………………………….5 第二節 研究目的與研究問題…………………………………….8 第三節 相關名詞釋義…………………………………………….9 第四節 研究範圍與限制………………………………………...12 第貳章 文獻探討與分析 第一節 概念改變………………………………………………...13 第二節 心智模式………………………………………………...17 第三節 模型與建模教學………………………………………...19 第四節 國內外酸鹼概念的研究………………………………...24 第五節 文獻探討對本研究的啟示……………………………...44 第參章 研究方法 第一節 研究設計………………………………………………..45 第二節 研究對象………………………………………………..45 第三節 研究工具………………………………………………..46 第四節 研究教學設計…………………………………………..49 第五節 研究實施流程…………………………………………..50 第六節 資料處理與分析………………………………………..53 第肆章 結果與討論 第一節 酸鹼概念二階層診斷測驗前測問卷分析……………..55 第二節 酸鹼概念二階層診斷測驗後測問卷分析……………..78 第三節 國小學童對酸鹼概念之整體表現……………………100 第四節 國小學童在酸鹼概念上之心智模式…………………106 第五節 國小學童在建模教學後心智模式的發展情形………120 第伍章 結論與建議 第一節 結論…………………………………………………….127 第二節 建議…………………………………………………….129 參考文獻………………....................................................................... 131 附錄一 酸鹼概念半結構式問卷……………………………………. 137 附錄二 酸鹼概念二階層診斷前測問卷……………………………..145 附錄三 酸鹼概念二階層診斷後測問卷……………………………..152 附錄四 國小酸鹼概念建模教學設計教案…………………………..158 附錄五 水溶液的酸鹼性power point動畫………………………….172

    參考文獻
    中文部份
    余淑君 ( 2002 )。以動態評量探究國小五年級學童酸鹼概念的概念改變機制,台 北市,國立台北師範學院數理教育研究所碩士論文。
    宋志雄 ( 1992 )。探究國三學生酸與鹼迷思概念並應用以發展教學診斷工具,彰化縣,國立彰化師範大學科學教育研究所碩士論文。
    李佩蓉 ( 2005 )。國民中小學「自然與生活科技」領域教科書內容與能力指標呈現之分析-以「化學反應」、「氧化還原」及「酸鹼鹽」為例,台北市,臺北市立師範學院科學教育研究所碩士論文。
    李詩閔 ( 2001 )。以微量實驗裝置的教學活動探討學生對酸鹼概念的學習情況,台北市,國立臺灣師範大學化學系碩士論文。
    林忠立 ( 2007 )。問題解決融入教學對學童科學概念改變機制之研究-以酸鹼概念為例,嘉義縣,國立嘉義大學科學教育研究所碩士論文。
    林靜雯 ( 2006 )。由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響。台北市,國立台灣師範大學科學教育研究所博士論文。
    林靜雯和邱美虹 ( 2008 )。從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊,第307期,9-14。
    邱美虹 ( 2000 )。概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    邱美虹 ( 2008 )。模型與建模能力之理論架構。科學教育月刊,第306期,2-9。
    邱喚文 ( 2000 )。利用概念圖探究國三學生酸與鹼的概念學習,台北市,國立臺北師範學院數理教育研究所碩士論文。
    姚錦棟 ( 2002 )。我國中學生酸鹼鹽迷思概念和心智模式之研究,台北市,國立臺灣師範大學化學系碩士論文。
    施朱娟 ( 1998 )。國中酸鹼概念教學之研究,台北市,國立臺灣師範大學化學系碩士論文。
    張淑女 ( 2008 )。以真實性評量探究建模能力。科學教育月刊,第308期,2-6。
    張萬居 ( 2004 )。國小學童酸鹼概念改變教學之研究,台北市,臺北市立師範學院科學教育研究所碩士論文。
    教育部 ( 2000 )。國民中小學九年一貫課程綱要:自然與生活科技學習領域。教育部。
    許秋瑾 ( 2002 )。學習風格與教材呈現對國小學童學習溶液酸鹼性之研究,臺南師範學院教師在職進修資訊碩士學位班碩士論文。
    陳志銘 ( 2005 )。以小組互動式動態評量探討國二學生在酸鹼鹽單元概念改變之研究,彰化縣,國立彰化師範大學科學教育研究所碩士論文。
    陳姍姍 ( 1993 )。探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工具,台北市,國立臺灣師範大學化學系碩士論文。
    陳美如 ( 2002 )。以師生共同構築的教學模組探討學生在「酸與鹼」概念的學習成效,台北市,國立臺灣師範大學化學系在職進修碩士學位班碩士論文。
    陳景期 ( 2003 )。以人本建構教學策略探究國小五年級學童水溶液酸鹼概念之概念改變機制,台北市,國立台北師範學院數理教育研究所碩士論文。
    陳舒嫻 ( 2004 )。九年一貫課程自然與生活科技領域教師創意微型教學實驗之設計研究---酸鹼滴定實驗微型化之設計,高雄市,國立高雄師範大學化學系碩士論文。
    陳詩芸 ( 2003 )。多元評量模式對國小學童自然科認知能力之區辨性及預測性之研究-以「酸鹼」為例,嘉義縣,國立嘉義大學科學教育研究所碩士論文。
    游清福 ( 2006 )。POE教學策略探究國小學童酸鹼概念改變之研究-以台北縣偏遠濱海地區為例,台北市,臺北市立教育大學自然科學教育學系碩士論文。
    楊舒婷 ( 2005 )。探討模式為基礎的教學對國二學生學習酸鹼概念影響之研究,高雄市,國立高雄師範大學科學教育研究所碩士論文。
    楊耀鵬 ( 2005 )。探究電腦多媒體教學對國三學生學習酸鹼概念與其概念改變之歷程。台北市,國立臺灣師範大學科學教育研究所碩士論文。
    趙素敏 ( 2004 )。國小學童酸鹼迷思概念類型與成因之研究,台北市,臺北市立師範學院科學教育研究所碩士論文。
    蘇景進 ( 2004 )。高三學生酸鹼鹽迷思概念之研究,台北市,國立臺灣師範大學科學教育研究所碩士論文。

    西文部份
    Cartier, J., Rudolph, J., & Stewart, J, (2001). The nature and structure of scientific models.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science. Minneapolis: University of Minnesota Press.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts [special issue]. Learning and Instruction, 4, 27-43.
    Cros, D., Chastrette, M., & Fayol, M.(1988). Conceptions of second-year university students of some fundamental notions in chemistry. International Journal of Science Education, 10 (3), 331-336 .
    Cros, D., Maurice, M., Amouroux, R., Chastrette, M., Leber, J., & Fayol, M.(1986). Conceptions of first-year university students of the constituents of matter and the notions of acids and bases. International Journal of Science Education, 8 (3), 305-313 .
    Franco, C., & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education. Dordrecht/ Boston/ London: Kluwer Academic Publishers.
    Gilbert, J., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses. International Journal of Science Education, 20(1), 83–97.
    Gilbert, S.W. (1991). Model building and definition of science. Journal of Research in Science Teaching, 28, 73-79.
    Grosslight, L., Unger, C., Jay, E., & Smith,C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
    Helm, H. & Novak, J. D. (1983). Proceedings of The International Seminar on Misconceptions of Science and Mathematics. Ithaca, N.Y.:Department of Education,Cornell university.
    Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
    Justi, R, S., & Gilbert, J. K. (2002). Modelling, teacher’s views on the nature of modelling, and implications for the education of modelers. International Journal of Science Education, 24, 369-387.
    Justi, R. & van Driel, F. (2005). The development of science teachers’ knowledge on models and modelling: promoting, characterizing, and understanding the process. International Journal of Science Education, Volume 27 No. 4, Pages 549 –573 .
    Lin, J. W., & Chiu, M. H. (2007). Exploring characteristics and diverse sources of students' mental models in acids and bases. International Journal of Science Education. 29(6), 771-803.
    Nakhleh, Mary B.; Krajcik, Joseph S.(1994). Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts. International Journal of Science Education, 31(10), 1077-1096.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Schmidt, Hans-Jurgen.(1991).A Label as a Hidden Persuader: Chemists' Neutralization Concept. International Journal of Science Education, 13(4), 459-72.
    Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn, & R. Duit. (Eds.), Learning science in the schools: Research reforming practice, 327-346. New Jersey: Lawrence Erlbaum Associates.
    Treagust, D. F., Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an International Perspective. International Journal of Science Education, Volume 29 No. 4, Pages 391 – 403.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth. Cognitive Psychology, 24, 535-538.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123-183.
    White, R. T. & Tisher, R.P. (1985). Research of Natural Sciences. In M. Wittrock (Ed.), Handbook on Research on teaching (3rd ed). New York : MacMillan. pp. 874-905.

    下載圖示
    QR CODE