研究生: |
溫延展 |
---|---|
論文名稱: |
三功能性氧化釓摻雜銪結合核酸適體之奈米粒子應用於核磁共振/斷層掃描/螢光 分子影像研究 Studies of Gd2O3:Eu-AP Nanoparticles for Trimodal MRI/CT/Fluorescence Molecular Imaging |
指導教授: | 陳家俊 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 氧化釓摻雜銪 、核磁共振 、斷層掃描 、螢光 、核酸適體 、分子影像 |
英文關鍵詞: | Europium doped-gadolinium oxide, Magnetic Resonance Imaging, Computed tomography Imaging, Fluorescence Imaging, Aptamer, Molecular Imaging |
論文種類: | 學術論文 |
相關次數: | 點閱:889 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
開發單一奈米材料兼具多功能之應用價值是目前奈米生醫領域研究與探討的課題。本文製備同時具有螢光、核磁共振訊號與X-ray吸收特性的多功能性奈米粒子-氧化釓摻雜銪,接著在奈米粒子外面包覆核酸適體(aptamer),希望透過其專一性的表現而能應用於分子影像顯影。
首先經由多元醇法合成出氧化釓摻雜銪的奈米粒子,並且以TEM、XRD、UV-PL、SQUID與EDS等儀器來加以分析與鑑定。接著再以FT-IR、TGA和 zetasizer來鑑定氧化釓摻雜銪奈米粒子表面修飾之檸檬酸基。最後則是透過qPCR 和confocal 來說明核酸適體的確有與我們所合成之奈米粒子結合。
將氧化釓摻雜銪奈米粒子應用於in vitro MRI上,經由實驗可得其 r1為5.0199 s-1mM-1,相比於T1-MRI常用之釓金屬類錯合物顯影劑如Gd-DOTA、Gd-DTPA(r1皆為4.1s-1mM-1)有較高的relaxivity,表示其MRI對比顯影效果較佳;而在in vitro CT的應用上,在重量濃度為350毫克/每毫升時,氧化釓摻雜銪奈米粒子的HU值高於常用之CT含碘顯影劑IOHEXOL,但低於350毫克/每毫升時,其HU值仍是低於含碘顯影劑IOHEXOL。
Recent nano-biomedicine have devote to research the topics for the development of single nano-materials possessing multifunctional properties. In this thesis, we synthesized the multifunctional europiumdoped gadolinium oxide ( Gd2O3:Eu ) nanoparticles which equipped with
fluorescence, magnetic resonance signal and X-ray absorption. Then we applied the specific targeting aptamer encapsulated outside the nanoparticles for molecular imaging.
First, Gd2O3:Eu nanoparticles were synthesized via the polyol method and were characterized based on TEM, XRD, UV-PL, SQUID and EDS. Then we identified the surface capping ligand citric acid of Gd2O3:Eu nanoparticles through FT-IR, TGA, and zetasizer. Ultimately,we employed qPCR and confocal to confirm the binding of Gd2O3:Eu-AP
nanoparticles.
Gd2O3:Eu nanoparticles were applied on the in vitro MRI. Compared to the conventional T1 MRI gadolinium chelated complex such as Gd-DOTA、Gd-DTPA(r1 4.1s-1mM-1), the relaxivity of Gd2O3:Eu nanoparticles(r1 5.0199s-1mM-1)was much higher. In other words, the effect of MRI enhanced contrast image by Gd2O3:Eu nanoparticles was better. On the in vitro CT, there was a much higher HU value of Gd2O3:Eu nanoparticles at the weight concentration of 350 mg/ml than
the common CT iodine contrast agent IOHEXOL. But less than 350 mg/ml, the HU value of Gd2O3:Eu nanoparticles was still lower than IOHEXOL.
1. Chorny, M.; Fishbein, I.; Yellen, B. B.; Alferiev, I. S.; Bakay, M.; Ganta, S.; Adamo, R.; Amiji, M.; Friedman, G.; Levy, R. J., Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proceedings of the National Academy of Sciences 2010, 107 , 8346-8351.
2. 奈米科技導論-基本原理及應用. 新文京開發出版股份有限公司 2005.
3. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108 , 2064-2110.
4. Lin, P.-C.; Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Wang, K.-Y.; Chen, Y.-J.; Lin, C.-C., Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma. Small 2006, 2 , 485-489.
5. Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R., Functional and Multifunctional Nanoparticles for Bioimaging and Biosensing. Langmuir 2009, 26 , 11631-11641.
6. Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009, 38 , 372-390.
7. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I., Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2 , 889-896.
8. Ali, Z.; Abbasi, A. Z.; Zhang, F.; Arosio, P.; Lascialfari, A.; Casula, M. F.; Wenk, A.; Kreyling, W.; Plapper, R.; Seidel, M.; Niessner, R.; Knöll, J.; Seubert, A.; Parak, W. J., Multifunctional Nanoparticles for Dual Imaging. Anal. Chem. 2011, 83 , 2877-2882.
9. Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Billotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O., Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging. J. Am. Chem. Soc. 2008, 130 , 5908-5915.
10. Huang, C.-C.; Su, C.-H.; Li, W.-M.; Liu, T.-Y.; Chen, J.-H.; Yeh, C.-S., Bifunctional Gd2O3/C Nanoshells for MR Imaging and NIR Therapeutic Applications. Adv. Funct. Mater. 2009, 19 , 249-258.
11. Cheung, E. N. M.; Alvares, R. D. A.; Oakden, W.; Chaudhary, R.; Hill, M. L.; Pichaandi, J.; Mo, G. C. H.; Yip, C.; Macdonald, P. M.; Stanisz, G. J.; van Veggel, F. C. J. M.; Prosser, R. S., Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Resonance Imaging and Computed Tomography. Chem. Mater. 2010, 22 , 4728-4739.
12. Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J.; Gao, J.; Li, X.; Chen, X., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31 , 3016-3022.
13. Kryza, D.; Taleb, J.; Janier, M.; Marmuse, L.; Miladi, I.; Bonazza, P.; Louis, C. d.; Perriat, P.; Roux, S. p.; Tillement, O.; Billotey, C., Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent. Bioconjugate Chem. 2011, 22 , 1145-1152.
14. (a) Yim, H.; Seo, S.; Na, K., MRI Contrast Agent-Based Multifunctional Materials: Diagnosis and Therapy. Journal of Nanomaterials 2011, 2011, 1-11; (b) Kircher, M. F.; Gambhir, S. S.; Grimm, J., Noninvasive cell-tracking methods. Nat Rev Clin Oncol 2011, 8 , 677-688; (c) Hahn, M.; Singh, A.; Sharma, P.; Brown, S.; Moudgil, B., Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Analytical and Bioanalytical Chemistry 2011, 399 , 3-27.
15. Cotton, S., Lanthanide and Actinide Chemistry. wiley 2006.
16. (a) Bouzigues, C.; Gacoin, T.; Alexandrou, A., Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano 2011, 5 , 8488-8505; (b) Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007, 46 , 1222-44.
17. Zhou, L.; Gu, Z.; Liu, X.; Yin, W.; Tian, G.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, W.; Chang, X.; Hu, Z.; Zhao, Y., Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J. Mater. Chem. 2012, 22 , 966-974.
18. Jia, G.; Liu, K.; Zheng, Y.; Song, Y.; Yang, M.; You, H., Highly Uniform Gd(OH)3 and Gd2O3:Eu3+ Nanotubes: Facile Synthesis and Luminescence Properties. The Journal of Physical Chemistry C 2009, 113 , 6050-6055.
19. Das, G. K.; Heng, B. C.; Ng, S.-C.; White, T.; Loo, J. S. C.; D’Silva, L.; Padmanabhan, P.; Bhakoo, K. K.; Selvan, S. T.; Tan, T. T. Y., Gadolinium Oxide Ultranarrow Nanorods as Multimodal Contrast Agents for Optical and Magnetic Resonance Imaging. Langmuir 2010, 26 , 8959-8965.
20. Tian, G.; Gu, Z.; Liu, X.; Zhou, L.; Yin, W.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.; Zhao, Y., Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. The Journal of Physical Chemistry C 2011, 115 , 23790-23796.
21. Liu, K.-C.; Tzeng, W.-H.; Chang, K.-M.; Chan, Y.-C.; Kuo, C.-C., Bipolar resistive switching effect in Gd2O3 films for transparent memory application. Microelectron. Eng. 2011, 88, 1586-1589.
22. Choi, S.; Park, B.-Y.; Ahn, T.; Kim, J. Y.; Hong, C. S.; Yi, M. H.; Jung, H.-K., Color emission and dielectric properties of Eu-doped Gd2O3 gate oxide thin films. Thin Solid Films 2011, 519, 3272-3275.
23. Russian Chemical Bulletin. International Edition 2004, 53.
24. (a) Sweet, W. H., Early history of development of boron neutron capture therapy of tumors. Journal of Neuro-Oncology 1997, 33 , 19-26; (b) Slatkin, D. N., Boron neutron-capture therapy. Neutron News 1990, 1 , 25-28.
25. Bridot, J.-L.; Dayde, D.; Riviere, C.; Mandon, C.; Billotey, C.; Lerondel, S.; Sabattier, R.; Cartron, G.; Le Pape, A.; Blondiaux, G.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O., Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J. Mater. Chem. 2009, 19 , 2328-2335.
26. Horiguchi, Y.; Kudo, S.; Nagasaki, Y., Gd@C 82 metallofullerenes for neutron capture therapy—fullerene solubilization by poly(ethylene glycol)-block-poly(2-( N , N -diethylamino)ethyl methacrylate) and resultant efficacy in vitro. Science and Technology of Advanced Materials 2011, 12, 044607.
27. Le Duc, G.; Miladi, I.; Alric, C.; Mowat, P.; Bräuer-Krisch, E.; Bouchet, A.; Khalil, E.; Billotey, C.; Janier, M.; Lux, F.; Epicier, T.; Perriat, P.; Roux, S.; Tillement, O., Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles. ACS Nano 2011, 5 , 9566-9574.
28. 楊俊英, 電子產業用螢光材料之應用調查. 工業技術研究院 民國91年.
29. (a) Young, S. W., Magnetic Resonance Imaging: Basic Principles
2nd ed. New York 1987; (b) Rinck,P. A.; Petersen S. B.; Muller R. N.,
An Introduction to Biomedical Nuclear Magnetic Resonance New York 1985.
30. Okuhata, Y., Delivery of diagnostic agents for magnetic resonance imaging. Advanced Drug Delivery Reviews 1999, 37 , 121-137.
31. Bae, K. H.; Kim, Y. B.; Lee, Y.; Hwang, J.; Park, H.; Park, T. G., Bioinspired Synthesis and Characterization of Gadolinium-Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging. Bioconjugate Chem. 2010, 21, 505-512.
32. Yang, H.; Zhuang, Y.; Sun, Y.; Dai, A.; Shi, X.; Wu, D.; Li, F.; Hu, H.; Yang, S., Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 2011, 32, 4584-4593.
33. Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y.; Lee, G. H., Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced T1 MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and In Vivo T1 MR Images. ACS Nano 2009, 3, 3663-3669.
34. Faucher, L.; Gossuin, Y.; Hocq, A.; Fortin, M.-A., Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 2011, 22, 295103.
35. Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Scott Prosser, R.; van Veggel, F. C. J. M., Size-Tunable, Ultrasmall NaGdF4 Nanoparticles: Insights into Their T1 MRI Contrast Enhancement. Chem. Mater. 2011, 23, 3714-3722.
36. Seibert, J. A.; Boone, J. M., X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation. Journal of Nuclear Medicine Technology 2005, 33, 3-18.
37. (a) Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M., Gold nanoparticles: a new X-ray contrast agent. British Journal of Radiology 2006, 79, 248-253; (b) Hainfeld, J. F.; Slatkin, D. N.; Smilowitz, H. M., The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology 2004, 49, N309-N315.
38. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 2007, 129, 7661-7665.
39. (a) Eck, W.; Nicholson, A. I.; Zentgraf, H.; Semmler, W.; Bartling, S. n., Anti-CD4-targeted Gold Nanoparticles Induce Specific Contrast Enhancement of Peripheral Lymph Nodes in X-ray Computed Tomography of Live Mice. Nano Lett. 2010, 10, 2318-2322; (b) Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer−Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 2010, 4, 3689-3696.
40. Oh, M. H.; Lee, N.; Kim, H.; Park, S. P.; Piao, Y.; Lee, J.; Jun, S. W.; Moon, W. K.; Choi, S. H.; Hyeon, T., Large-Scale Synthesis of Bioinert Tantalum Oxide Nanoparticles for X-ray Computed Tomography Imaging and Bimodal Image-Guided Sentinel Lymph Node Mapping. J. Am. Chem. Soc. 2011, 133, 5508-5515.
41. Ai, K.; Liu, Y.; Liu, J.; Yuan, Q.; He, Y.; Lu, L., Large-Scale Synthesis of Bi2S3 Nanodots as a Contrast Agent for In Vivo X-ray Computed Tomography Imaging. Adv. Mater. 2011, 23, 4886-4891.
42. Gopinath, S., Methods developed for SELEX. Analytical and Bioanalytical Chemistry 2007, 387, 171-182.
43. Bridot, J.-L.; Faure, A.-C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J.-L.; Vander Elst, L.; Muller, R.; Roux, S.; Perriat, P.; Tillement, O., Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging. J. Am. Chem. Soc. 2007, 129, 5076-5084.
44. NIST:美國國家標準和技術研究院, http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.
45. (a) Petoral, R. M.; Söderlind, F.; Klasson, A.; Suska, A.; Fortin, M. A.; Abrikossova, N.; Selegård, L. a.; Käll, P.-O.; Engström, M.; Uvdal, K., Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties. The Journal of Physical Chemistry C 2009, 113, 6913-6920; (b) Söderlind, F.; Pedersen, H.; Petoral Jr, R. M.; Käll, P.-O.; Uvdal, K., Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci. 2005, 288, 140-148; (c) Bazzi, R.; Flores, M. A.; Louis, C.; Lebbou, K.; Zhang, W.; Dujardin, C.; Roux, S.; Mercier, B.; Ledoux, G.; Bernstein, E.; Perriat, P.; Tillement, O., Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Interface Sci. 2004, 273, 191-197.
46. (a) Bartczak, D.; Kanaras, A. G., Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir 2011, 27, 10119-10123; (b) Hwang, D. W.; Ko, H. Y.; Lee, J. H.; Kang, H.; Ryu, S. H.; Song, I. C.; Lee, D. S.; Kim, S., A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer. Journal of Nuclear Medicine 2010, 51, 98-105.
47. Vuu, K.; Xie, J.; McDonald, M. A.; Bernardo, M.; Hunter, F.; Zhang, Y.; Li, K.; Bednarski, M.; Guccione, S., Gadolinium-Rhodamine Nanoparticles for Cell Labeling and Tracking via Magnetic Resonance and Optical Imaging. Bioconjugate Chem. 2005, 16, 995-999.
48. Hu, F.; MacRenaris, K. W.; Waters, E. A.; Liang, T.; Schultz-Sikma, E. A.; Eckermann, A. L.; Meade, T. J., Ultrasmall, Water-Soluble Magnetite Nanoparticles with High Relaxivity for Magnetic Resonance Imaging. The Journal of Physical Chemistry C 2009, 113, 20855-20860.
49. Flores-González, M. A.; Louis, C.; Bazzi, R.; Ledoux, G.; Lebbou, K.; Roux, S.; Perriat, P.; Tillement, O., Elaboration of nanostructured Eu3+-doped Gd2O3 phosphor fine spherical powders using polyol-mediated synthesis. Applied Physics A: Materials Science & Processing 2005, 81, 1385-1391.
50. Caruntu, D.; Remond, Y.; Chou, N. H.; Jun, M.-J.; Caruntu, G.; He, J.; Goloverda, G.; O'Connor, C.; Kolesnichenko, V., Reactivity of 3d Transition Metal Cations in Diethylene Glycol Solutions. Synthesis of Transition Metal Ferrites with the Structure of Discrete Nanoparticles Complexed with Long-Chain Carboxylate Anions. Inorg. Chem. 2002, 41, 6137-6146.
51. Guay-Begin, A. A.; Chevallier, P.; Faucher, L.; Turgeon, S.; Fortin, M. A., Surface modification of gadolinium oxide thin films and nanoparticles using poly(ethylene glycol)-phosphate. Langmuir 2012, 28, 774-82.
52. (a) Chang, C.; Kimura, F.; Kimura, T.; Wada, H., Preparation and characterization of rod-like Eu:Gd2O3 phosphor through a hydrothermal routine. Mater. Lett. 2005, 59, 1037-1041; (b) Wakefield, G.; Keron, H. A.; Dobson, P. J.; Hutchison, J. L., Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles. J. Colloid Interface Sci. 1999, 215, 179-182.
53. Mutelet, B.; Perriat, P.; Ledoux, G.; Amans, D.; Lux, F.; Tillement, O.; Billotey, C.; Janier, M.; Villiers, C.; Bazzi, R.; Roux, S.; Lu, G.; Gong, Q.; Martini, M., Suppression of luminescence quenching at the nanometer scale in Gd2O3doped with Eu 3 + or Tb 3 +: Systematic comparison between nanometric and macroscopic samples of life-time, quantum yield, radiative and non-radiative decay rates. J. Appl. Phys. 2011, 110, 094317-9.
54. Na, H. B.; Song, I. C.; Hyeon, T., Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater. 2009, 21, 2133-2148.
55. (a) Yamane, T.; Hanaoka, K.; Muramatsu, Y.; Tamura, K.; Adachi, Y.; Miyashita, Y.; Hirata, Y.; Nagano, T., Method for Enhancing Cell Penetration of Gd3+-based MRI Contrast Agents by Conjugation with Hydrophobic Fluorescent Dyes. Bioconjugate Chem. 2011, 22, 2227-2236; (b) Manus, L. M.; Mastarone, D. J.; Waters, E. A.; Zhang, X.-Q.; Schultz-Sikma, E. A.; MacRenaris, K. W.; Ho, D.; Meade, T. J., Gd(III)-Nanodiamond Conjugates for MRI Contrast Enhancement. Nano Lett. 2009, 10, 484-489.
56. (a) Ahrén, M.; Selegård, L. a.; Klasson, A.; Söderlind, F.; Abrikossova, N.; Skoglund, C.; Bengtsson, T. r.; Engström, M.; Käll, P.-O.; Uvdal, K., Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement. Langmuir 2010, 26, 5753-5762; (b) Fortin, M.-A.; Petoral Jr, R. M.; Söderlind, F.; Klasson, A.; Engström, M.; Veres, T.; Käll, P.-O.; Uvdal, K., Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 2007, 18, 395501; (c) Engström, M.; Klasson, A.; Pedersen, H.; Vahlberg, C.; Käll, P.-O.; Uvdal, K., High proton relaxivity for gadolinium oxide nanoparticles. Magn. Reson. Mater. Phys., Biol. Med. 2006, 19, 180-186.
57. Kellar, K.; Fujii, D.; Gunther, W.; Briley-Sæbø, K.; Spiller, M.; Koenig, S., ‘NC100150’, a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography. Magn. Reson. Mater. Phys., Biol. Med. 1999, 8, 207-213.