研究生: |
陳萱 Chen, Hsuan |
---|---|
論文名稱: |
尋找與失智症有相關性的藥物 Finding Drugs Associated With Dementia |
指導教授: |
李子奇
Lee, Tzu-Chi |
學位類別: |
碩士 Master |
系所名稱: |
健康促進與衛生教育學系 Department of Health Promotion and Health Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 失智症 、藥物 、全人口病例對照研究 |
英文關鍵詞: | dementia, drugs, population-wide case–control study |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DHPHE.008.2019.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:313 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景 全世界的人口正快速地老化,據估計失智症影響全球約5000萬人口;然而,至今卻沒有一種治療方式能夠治癒失智症或改變其病程。故本研究主要的目的是篩選出對降低失智症風險有潛在效果的藥物。
方法 我們使用臺灣全民健康保險資料庫進行一項以全人口為基礎的病例對照研究。病例組包含13,459位年齡介於50至80歲、領有重大傷病卡、失智症初診日介於2005年1月1日至2013年12月31日的病人。以病例組的性別、年齡及投保薪資配對得到13,459位非失智症的病人做為對照組。排除失智症初診日前一年期間內所使用的藥物後,將前兩年至前5年間使用的藥物ATC代碼(Anatomical Therapeutic Chemical code)做分析。利用條件式邏輯斯迴歸及錯誤發現率(false discovery rate,FDR)篩選藥物。
結果 從1,353種藥物中,本研究篩選出811種藥物在病例組及對照組中的使用者皆超過30人。單變項分析結果顯示有5種Odds-ratio小於0.8的藥物分別與失智症風險呈負相關,446種Odds-ratio大於1.2的藥物與失智症風險呈正相關。單變項分析後,Odds-ratio小於0.8的5種藥物及Odds-ratio大於4的11種藥物分別進行多變項分析。多變項分析控制人口學變項(年齡及工作)、失智症相關疾病(糖尿病、高血壓、心血管疾病、憂鬱症、焦慮症及聽力損失)、住院天數及門診次數後,結果顯示單變項分析中顯著且Odds Ratio小於0.8的5種藥物中仍有4種藥物與失智症風險呈負相關。這四種藥物分別為phenoxymethyl penicillin (Odds-ratio = 0.70; 95% CI: 0.58-0.85), fluorouracil (Odds-ratio = 0.56; 95% CI: 0.42-0.75), ethenzamide (Odds-ratio = 0.68; 95% CI: 0.52-0.90), and butamirate (Odds-ratio = 0.73; 95% CI: 0.64-0.85)。此外,單變項分析中11種與失智症風險有正相關的藥物,在多變項分析中仍然有9種有顯著正相關。這9種藥物分別為trihexyphenidyl (odds ratio, 1.62; 95% CI, 1.33–1.97), guetiapine (odds ratio, 16.33; 95% CI, 13.91–19.17), risperidone (odds ratio, 15.74; 95% CI, 12.57–19.71), citalopram (odds ratio, 1.90; 95% CI, 1.46–2.47), levodopa (odds ratio, 2.37; 95% CI, 2.00–2.81), haloperidol (odds ratio, 1.55; 95% CI, 1.33–1.81), sertraline (odds ratio, 3.47; 95% CI, 2.90–4.16), escitalopram (odds ratio, 2.53; 95% CI, 2.00–3.21), and venlafaxine (odds ratio, 1.94; 95% CI, 1.44–2.61)。
結論 本研究發現4種藥物(penicillin、ethenzamide、butamirate及pseudoephedrine)值得針對失智症的初級預防或治療做進一步的研究。此外,本研究篩選出的神經系統藥物與失智症風險有正相關,可能是藥物導致或藥物治療的疾病為失智症的前驅期疾病所致。
Background: Populations worldwide are aging rapidly. Currently, Dementia is estimated to affect approximately 50 million people worldwide. However, no drugs cure dementia or alter its progressive course. The primary aim of this study was to screen drugs that might potentially contribute to reduce the risk of dementia.
Methods: We used data from Taiwan’s National Health Insurance Research Database to conduct a total population-based case–control study. The case group comprised 13,459 dementia patients, aged 50–80 years, who had a catastrophic illness certificate and obtained their first diagnosis of dementia between January 1, 2005, and December 31, 2013. These cases were compared with 13,459 sex–, age–, and insurance premium–matched controls. Drug use 2–5 years before the first diagnosis date was analyzed according to the Anatomical Therapeutic Chemical code. Conditional logistic regression models and false discovery rate were used for statistical analysis.
Results: Of 1,353 drugs, 811 were identified with ≥30 users among both case and control groups. Univariate analysis revealed 5 drugs with OR < 0.8 and 446 with OR > 1.2 that were negatively and positively associated with dementia risk, respectively. Five drugs with OR < 0.8 and eleven drugs with OR > 4 selected from univariate analysis were conducted multivariate analysis, respectively. The multivariate analysis was conducted after controlling for demographic variables (age and job), dementia-related diseases (diabetes, hypertension, cerebrovascular disease, depression, anxiety, and hearing loss), hospital days, and outpatient visits. The results showed that of the five negative drugs (with OR<0.8) in univariate analysis, four were also negatively associated with the risk of dementia: phenoxymethylpenicillin (Odds ratio, 0.70; 95% confidence interval [CI], 0.58–0.85), 5-fluorouracil (Odds ratio, 0.56; 95% CI, 0.42–0.75), ethenzamide (Odds ratio, 0.68; 95% CI, 0.52–0.90), and butamirate (Odds ratio, 0.73; 95% CI, 0.63–0.84). In addition, of the eleven positively drugs (with OR>4) in univariate analysis, nine were found to be positively associated with the risk of dementia: trihexyphenidyl (Odds ratio, 1.62; 95% CI, 1.33–1.97), guetiapine (Odds ratio, 16.33; 95% CI, 13.91–19.17), risperidone (Odds ratio, 15.74; 95% CI, 12.57–19.71), citalopram (Odds ratio, 1.90; 95% CI, 1.46–2.47), levodopa (Odds ratio, 2.37; 95% CI, 2.00–2.81), haloperidol (Odds ratio, 1.55; 95% CI, 1.33–1.81), sertraline (Odds ratio, 3.47; 95% CI, 2.90–4.16), escitalopram (Odds ratio, 2.53; 95% CI, 2.00–3.21), and venlafaxine (Odds ratio, 1.94; 95% CI, 1.44–2.61).
Conclusion: Four drugs, penicillin, ethenzamide, butamirate, and pseudoephedrine, warrant further research for dementia prevention or treatment. The nervous system drugs screened in this study may be caused by drug-induced or -treated prodromal diseases of dementia.
1. Mba CJ. Population ageing in Ghana: research gaps and the way forward. Journal of aging research. 2010;2010.
2. IndexMundi. World Demographics Profile 2018, Available online at: https://www.indexmundi.com/world/demographics_profile.html. Retrieved May 16, 2018. 2018.
3. Department of Statistics of Ministry of the Interior, Taiwan (2018). Available online at: https://www.moi.gov.tw/chi/chi_site/stat/node.aspx?sn=6716. Retrieved May 18, 2018. 2018.
4. World Health Organization. Dementia fact sheet from the World Health Organization (WHO). 2017; http://www.who.int/mediacentre/factsheets/fs362/en/
5. Taiwan Alzheimer's Disease Association(TADA) , Available online at: http://www.tada2002.org.tw/About/IsntDementia. Retrieved May 16, 2018.
6. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of pharmacal research. 2013;36(4):375-399.
7. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. 2016.
8. Gauthier S, Albert M, Fox N, et al. Why has therapy development for dementia failed in the last two decades? Alzheimer's & Dementia. 2016;12(1):60-64.
9. Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of dementia in the United States. New England Journal of Medicine. 2013;368(14):1326-1334.
10. Wimo A, Guerchet M, Ali G-C, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer's & Dementia. 2017;13(1):1-7.
11. Ward A, Arrighi HM, Michels S, Cedarbaum JM. Mild cognitive impairment: disparity of incidence and prevalence estimates. Alzheimer's & Dementia. 2012;8(1):14-21.
12. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: A clinical review. JAMA. 2014;312(23):2551-2561.
13. Petersen RC. Clinical practice. Mild cognitive impairment. The New England journal of medicine. 2011;364(23):2227.
14. Plassman BL, Langa KM, Fisher GG, et al. Prevalence of cognitive impairment without dementia in the United States. Annals of internal medicine. 2008;148(6):427-434.
15. Prince MJ. World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International; 2015.
16. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer's & Dementia: The Journal of the Alzheimer's Association.9(1):63-75.e62.
17. Dodge HH, Buracchio TJ, Fisher GG, et al. Trends in the prevalence of dementia in Japan. International Journal of Alzheimer’s Disease. 2012;2012.
18. Kim YJ, Han JW, So YS, Seo JY, Kim KY, Kim KW. Prevalence and Trends of Dementia in Korea: A Systematic Review and Meta-Analysis. J Korean Med Sci. 2014;29(7):903-912.
19. Chan KY, Wang W, Wu JJ, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. The Lancet. 2013;381(9882):2016-2023.
20. Ahmadi-Abhari S, Guzman-Castillo M, Bandosz P, et al. Temporal trend in dementia incidence since 2002 and projections for prevalence in England and Wales to 2040: modelling study. bmj. 2017;358:j2856.
21. Matthews F, Stephan B, Robinson L, et al. A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nature communications. 2016;7:11398.
22. Grasset L, Brayne C, Joly P, Jacqmin-Gadda H, Peres K, Foubert-Samier A. Trends in dementia incidence: evolution over a 10-year period in France. Alzheimers Dement. 2016;12.
23. Satizabal CL, Beiser AS, Chouraki V, Chêne G, Dufouil C, Seshadri S. Incidence of dementia over three decades in the Framingham Heart Study. New England Journal of Medicine. 2016;374(6):523-532.
24. van Bussel EF, Richard E, Arts DL, et al. Dementia incidence trend over 1992-2014 in the Netherlands: Analysis of primary care data. PLoS medicine. 2017;14(3):e1002235.
25. Schrijvers EM, Verhaaren BF, Koudstaal PJ, Hofman A, Ikram MA, Breteler MM. Is dementia incidence declining? Trends in dementia incidence since 1990 in the Rotterdam Study. Neurology. 2012;78(19):1456-1463.
26. Wu Y-T, Beiser AS, Breteler MM, et al. The changing prevalence and incidence of dementia over time—current evidence. Nature Reviews Neurology. 2017;13(6):327.
27. Stevens T, Livingston G, Kitchen G, Manela M, Walker Z, Katona C. Islington study of dementia subtypes in the community. The British Journal of Psychiatry. 2002;180(3):270-276.
28. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. The Lancet. 2017;390(10113):2673-2734.
29. Organization WH. International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Geneva: World Health Organization, 2010. 2016.
30. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub; 2013.
31. Byeon H, Lee Y, Lee SY, et al. Association of alcohol drinking with verbal and visuospatial memory impairment in older adults: Clinical Research Center for Dementia of South Korea (CREDOS) study. International psychogeriatrics. 2015;27(3):455.
32. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1981;10(2):122-126.
33. Vishal S, Sourabh A, Harkirat S. Alois Alzheimer (1864–1915) and the Alzheimer syndrome. Journal of medical biography. 2011;19(1):32-33.
34. Rodrigue K, Kennedy K, Devous M, et al. β-Amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology. 2012;78(6):387-395.
35. Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL. The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing research reviews. 2013;12(3):757-763.
36. Jack Jr CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. The Lancet Neurology. 2010;9(1):119-128.
37. Eckerström C, Olsson E, Klasson N, et al. Multimodal prediction of dementia with up to 10 years follow up: the Gothenburg MCI study. Journal of Alzheimer's Disease. 2015;44(1):205-214.
38. Landau SM, Frosch MP. Tracking the earliest pathologic changes in Alzheimer disease. AAN Enterprises; 2014.
39. Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer's disease and other dementias: a priority for European science and society. The Lancet Neurology. 2016;15(5):455-532.
40. Prince M, Bryce R, Ferri C. World Alzheimer Report 2011: The benefits of early diagnosis and intervention. Alzheimer's Disease International; 2011.
41. Lin JS, O’Connor E, Rossom RC, Perdue LA, Eckstrom E. Screening for cognitive impairment in older adults: a systematic review for the US Preventive Services Task Force. Annals of internal medicine. 2013;159(9):601-612.
42. Bond M, Rogers G, Peters J, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): a systematic review and economic model. 2012.
43. Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database of systematic reviews. 2006(1).
44. Hort J, O’brien J, Gainotti G, et al. EFNS guidelines for the diagnosis and management of Alzheimer’s disease. European Journal of Neurology. 2010;17(10):1236-1248.
45. Burns A, O'Brien J. Clinical practice with anti-dementia drugs: a consensus statement from British Association for Psychopharmacology. Journal of Psychopharmacology. 2006;20(6):732-755.
46. Gauthier S, Loft H, Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer's disease by memantine: a pooled data analysis. International journal of geriatric psychiatry. 2008;23(5):537-545.
47. Banerjee S. The use of antipsychotic medication for people with dementia: time for action. 2009.
48. Maher AR, Maglione M, Bagley S, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. Jama. 2011;306(12):1359-1369.
49. Schneider LS, Dagerman KS, Insel P. Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials. Jama. 2005;294(15):1934-1943.
50. Services UDoHH. National Plan to Address Alzheimer's Disease: 2016 update. https://aspe.hhs.gov/report/national-plan-address-alzheimers-disease-2016-update. Accessed October 19, 2016. 2016.
51. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. The Lancet Neurology. 2011;10(9):819-828.
52. Qiu C, Xu W, Fratiglioni L. Vascular and psychosocial factors in Alzheimer's disease: epidemiological evidence toward intervention. Journal of Alzheimer's Disease. 2010;20(3):689-697.
53. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13.
54. Yaffe K. Modifiable Risk Factors and Prevention of Dementia: What Is the Latest Evidence? JAMA internal medicine. 2018;178(2):281-282.
55. 2017-2018 National Health Insurance Annual Report. Available online at: https://www1.nhi.gov.tw/Nhi_E-LibraryPubWeb/CustomPage/P_Detail.aspx?CP_ID=207. Retrieved November 21, 2018.
56. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to Assess the Potential Effect of Unmeasured Confounding in Observational Studies. JAMA. 2019.
57. Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web Site and R Package for Computing E-values. Epidemiology (Cambridge, Mass). 2018;29(5):e45-e47.
58. World Health Organization. ATC/DDD Index. 2018; Available at : https://www.whocc.no/atc_ddd_index/. Retrieved November 11, 2018,.
59. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease A review of 17 epidemiologic studies. Neurology. 1996;47(2):425-432.
60. Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674.
61. Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature neuroscience. 2011;14(10):1227.
62. Lynch MA, Mills KH. Immunology meets neuroscience–opportunities for immune intervention in neurodegenerative diseases. Brain, behavior, and immunity. 2012;26(1):1-10.
63. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harbor perspectives in medicine. 2012;2(1):a006346.
64. Drake C, Boutin H, Jones MS, et al. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain, behavior, and immunity. 2011;25(6):1113-1122.
65. Rayar A-M, Lagarde N, Ferroud C, Zagury J-F, Montes M, Sylla-Iyarreta Veitia M. Update on COX-2 selective inhibitors: chemical classification, side effects and their use in cancers and neuronal diseases. Current topics in medicinal chemistry. 2017;17(26):2935-2956.
66. Szekely CA, Breitner JC, Fitzpatrick AL, et al. NSAID use and dementia risk in the Cardiovascular Health Study* Role of APOE and NSAID type. Neurology. 2008;70(1):17-24.
67. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiology of aging. 2000;21(3):383-421.
68. McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiology of aging. 2007;28(5):639-647.
69. Vlad SC, Miller DR, Kowall NW, Felson DT. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008;70(19):1672-1677.
70. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer's disease and duration of NSAID use. Neurology. 1997;48(3):626-632.
71. Cole GM, Frautschy SA. Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer's disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2010;9(2):140-148.
72. Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. Jama. 2003;289(21):2819-2826.
73. Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology. 1999;53(1):197-197.
74. Aisen PS, Davis K, Berg J, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Neurology. 2000;54(3):588-588.
75. Dregan A, Chowienczyk P, Armstrong D. Patterns of anti‐inflammatory drug use and risk of dementia: a matched case–control study. European journal of neurology. 2015;22(11):1421-1428.
76. Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Elsevier; 2013.
77. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. Bmj. 2011;342:c7086.
78. Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonists The Cache County Study. Neurology. 2002;59(6):880-886.
79. Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. American journal of epidemiology. 2002;156(5):445-453.
80. Szekely CA, Town T, Zandi PP. NSAIDs for the chemoprevention of Alzheimer’s disease. Inflammation in the Pathogenesis of Chronic Diseases: Springer; 2007:229-248.
81. Nilsson SE, Johansson B, Takkinen S, et al. Does aspirin protect against Alzheimer's dementia? A study in a Swedish population-based sample aged≥ 80 years. European journal of clinical pharmacology. 2003;59(4):313-319.
82. Dregan A, Chowienczyk P, Gulliford MC. Are inflammation and related therapy associated with all-cause dementia in a primary care population? Journal of Alzheimer's Disease. 2015;46(4):1039-1047.
83. Bentham P, Gray R, Sellwood E, Hills R, Crome P, Raftery J. Aspirin in Alzheimer's disease (AD2000): a randomised open-label trial. The Lancet Neurology. 2008;7(1):41-49.
84. Zhou B, Xu Z, Kuang Y, Deng Y, Liu Z. Effectiveness of polydrug therapy for senile dementia. Chinese Journal of Clinical Rehabilitation. 2004;8(7):1214-1215.
85. In'T Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. New England Journal of Medicine. 2001;345(21):1515-1521.
86. Cornelius C, Fastbom J, Winblad B, Viitanen M. Aspirin, NSAIDs, risk of dementia, and influence of the apolipoprotein E epsilon 4 allele in an elderly population. Neuroepidemiology. 2004;23(3):135-143.
87. Benner EJ. The Use and Abuse of Antibiotics—1967. JBJS. 1967;49(5):977-988.
88. The Food and Drug Administration, Ministry of Health and Welfare. Available at : https://www.fda.gov.tw/MLMS/H0001D.aspx?Type=Lic&LicId=02016979. Retrieved November 6, 2018,.
89. Nitrini R. The cure of one of the most frequent types of dementia: a historical parallel. Alzheimer Disease & Associated Disorders. 2005;19(3):156-158.
90. Allen H, Hossain C, Abidi N, Larijani M, Joshi S. Penicillin: The old/new wonder drug. Adv Tech Biol Med. 2017;5(1).
91. Riviere GR, Riviere K, Smith K. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Molecular Oral Microbiology. 2002;17(2):113-118.
92. Miklossy J. Biology and neuropathology of dementia in syphilis and Lyme disease. Handbook of clinical neurology. 2008;89:825-844.
93. The Food and Drug Administration, Ministry of Health and Welfare. Available at :https://www.fda.gov.tw/MLMS/H0001D.aspx?Type=Lic&LicId=51058033. Retrieved November 11, 2018,.
94. Kreukels BP, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clinical breast cancer. 2008;8(1):80-87.
95. Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society. 1999;85(3):640-650.
96. Wigmore PM, Mustafa S, El-Beltagy M, Lyons L, Umka J, Bennett G. Effects of 5-FU. Chemo Fog: Springer; 2010:157-164.
97. Ehninger D, Kempermann G. Neurogenesis in the adult hippocampus. Cell and tissue research. 2008;331(1):243-250.
98. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645-660.
99. ELBeltagy M, Mustafa S, Umka J, et al. Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behavioural brain research. 2010;208(1):112-117.
100. Lyons L, ElBeltagy M, Umka J, et al. Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology. 2011;215(1):105-115.
101. Seigers R, Schagen SB, Beerling W, et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behavioural brain research. 2008;186(2):168-175.
102. Foley JJ, Raffa RB, Walker EA. Effects of chemotherapeutic agents 5-fluorouracil and methotrexate alone and combined in a mouse model of learning and memory. Psychopharmacology. 2008;199(4):527-538.
103. Gandal MJ, Ehrlichman RS, Rudnick ND, Siegel SJ. A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience. 2008;157(1):95-104.
104. Płusa T. Butamirate citrate in control of cough in respiratory tract inflammation. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2017;43(254):69-74.
105. Miko P. The use and safety of butamirate containing drops, syrup and depot tablets in Hungary. Orvosi hetilap. 2005;146(13):609-612.
106. Paul AK, Rahman MM, Seraj S, et al. Development and validation of a new stable HPLC method for the assay of butamirate citrate in pharmaceutical formulations. Adv Nat Appl Sci. 2011;5(2):75-84.
107. Thakur A, Pathak SR. Introduction to medicinally important constituent from chinese medicinal plants. Synthesis of Medicinal Agents from Plants: Elsevier; 2018:333-349.
108. Liao TS, Epstein SA. General Features and Diagnostic Considerations. The American Psychiatric Association Publishing Textbook of Psychosomatic Medicine and Consultation-Liaison Psychiatry. 2018:281.
109. Naeem S. Enhanced intelligence: the rising use of “smart drugs" among students. Lung cancer. 2018;15:05.
110. Ragan CI, Bard I, Singh I. What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology. 2013;64:588-595.
111. Lyon J. Chess study revives debate over cognition-enhancing drugs. Jama. 2017;318(9):784-786.
112. Weyandt LL, Oster DR, Marraccini ME, et al. Prescription stimulant medication misuse: Where are we and where do we go from here? Experimental and clinical psychopharmacology. 2016;24(5):400.
113. Jain R, Chang CC, Koto M, Geldenhuys A, Nichol R, Joubert G. Non-medical use of methylphenidate among medical students of the University of the Free State. South African Journal of Psychiatry. 2017;23(1).
114. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33(7):1477.
115. Nicholson P, Mayho G, Sharp C. Cognitive enhancing drugs and the workplace. BMA, London. 2015.
116. De Deyn PP, Katz IR, Brodaty H, Lyons B, Greenspan A, Burns A. Management of agitation, aggression, and psychosis associated with dementia: a pooled analysis including three randomized, placebo-controlled double-blind trials in nursing home residents treated with risperidone. Clinical Neurology and Neurosurgery. 2005;107(6):497-508.
117. Katz I, de Deyn PP, Mintzer J, Greenspan A, Zhu Y, Brodaty H. The efficacy and safety of risperidone in the treatment of psychosis of Alzheimer's disease and mixed dementia: a meta‐analysis of 4 placebo‐controlled clinical trials. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences. 2007;22(5):475-484.
118. Bains J, Birks J, Dening T. Antidepressants for treating depression in dementia. Cochrane Database of Systematic Reviews. 2002(4).
119. Flicker L, Evans JG. Piracetam for dementia or cognitive impairment. Cochrane Database of Systematic Reviews. 2004(1).
120. Wei Z-H, He Q-B, Wang H, Su B-H, Chen H-Z. Meta-analysis: the efficacy of nootropic agent Cerebrolysin in the treatment of Alzheimer’s disease. Journal of neural transmission. 2007;114(5):629-634.
121. Ralph SJ, Espinet AJ. Increased All-Cause Mortality by Antipsychotic Drugs: Updated Review and Meta-Analysis in Dementia and General Mental Health Care. Journal of Alzheimer's Disease Reports. 2018;2(1):287-312.
122. Zhai Y, Yin S, Zhang D. Association between antipsychotic drugs and mortality in older persons with Alzheimer’s disease: A systematic review and meta-analysis. Journal of Alzheimer's Disease. 2016;52(2):631-639.
123. Jones ME, Campbell G, Patel D, et al. Risk of mortality (including sudden cardiac death) and major cardiovascular events in users of olanzapine and other antipsychotics: a study with the General Practice Research Database. Cardiovascular psychiatry and neurology. 2013;2013.
124. Jennum P, Baandrup L, Ibsen R, Kjellberg J. Increased all-cause mortality with use of psychotropic medication in dementia patients and controls: a population-based register study. European neuropsychopharmacology. 2015;25(11):1906-1913.
125. Martin Arias LH, Treceño Lobato C, Pérez García S, Sainz Gil M, Sanz Fadrique R, Garcia Ortega P. Risk excess of mortality and use of antipsychotics: a case–noncase study. International clinical psychopharmacology. 2017;32(1):1-5.
126. Murray-Thomas T, Jones ME, Patel D, et al. Risk of mortality (including sudden cardiac death) and major cardiovascular events in atypical and typical antipsychotic users: a study with the general practice research database. Cardiovascular psychiatry and neurology. 2013;2013.
127. Ballard CG, Thomas A, Fossey J, et al. A 3-month, randomized, placebo-controlled, neuroleptic discontinuation study in 100 people with dementia: the neuropsychiatric inventory median cutoff is a predictor of clinical outcome. The Journal of clinical psychiatry. 2004;65(1):114-119.
128. Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7-19.
129. Sampath D, Sathyanesan M, Newton SS. Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal–prefrontal cortex dysconnectivity. Neuropsychiatric disease and treatment. 2017;13:1509.
130. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences. 1996;93(9):3908-3913.
131. Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. Journal of affective disorders. 2011;134(1-3):483-487.
132. Keilp JG, Gorlyn M, Oquendo MA, Burke AK, Mann JJ. Attention deficit in depressed suicide attempters. Psychiatry research. 2008;159(1-2):7-17.
133. Simons C, Jacobs N, Derom C, et al. Cognition as predictor of current and follow‐up depressive symptoms in the general population. Acta psychiatrica scandinavica. 2009;120(1):45-52.
134. Tavares JVT, Clark L, Cannon DM, Erickson K, Drevets WC, Sahakian BJ. Distinct profiles of neurocognitive function in unmedicated unipolar depression and bipolar II depression. Biological psychiatry. 2007;62(8):917-924.
135. Castaneda AE, Marttunen M, Suvisaari J, et al. The effect of psychiatric co-morbidity on cognitive functioning in a population-based sample of depressed young adults. Psychological medicine. 2010;40(1):29-39.
136. Fava M, Graves LM, Benazzi F, et al. A cross-sectional study of the prevalence of cognitive and physical symptoms during long-term antidepressant treatment. The Journal of clinical psychiatry. 2006;67(11):1754-1759.
137. Van der Mussele S, Fransen E, Struyfs H, et al. Depression in mild cognitive impairment is associated with progression to Alzheimer's disease: a longitudinal study. Journal of Alzheimer's Disease. 2014;42(4):1239-1250.
138. Sierksma AS, van den Hove DL, Steinbusch HW, Prickaerts J. Major depression, cognitive dysfunction and Alzheimer's disease: is there a link? European Journal of Pharmacology. 2010;626(1):72-82.
139. Hessmann P, Dodel R, Baum E, et al. Antidepressant medication in a German cohort of patients with Alzheimer's disease. International journal of clinical pharmacology and therapeutics. 2018;56(3):101-112.