簡易檢索 / 詳目顯示

研究生: 廖黎杰
Liaw, Li-Jie
論文名稱: 鐵鈀合金薄膜在氫化效應下旋轉磁異向性
Magnetic anisotropy rotated by hydrogenation in FePd alloy thin film
指導教授: 林文欽
Lin, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 48
中文關鍵詞: 原子力顯微儀磁光科爾效應磁性量測氫化效應
DOI URL: http://doi.org/10.6345/NTNU202100068
論文種類: 學術論文
相關次數: 點閱:162下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鈀金屬相關的固態材料在氫化效應下進行了廣泛的研究。與本實驗以前專注在CoxPd100-x合金不同,研究中我們著重於研究FexPd100-x合金薄膜的磁性行為,因為FexPd100-x合金這項固態材料對於氫原子的儲存時間更長,能進行更多的研究和應用。材料製成方面選擇為藍寶石基板在超高真空下利用電子束熱蒸鍍完成,在確認不同比例FexPd100-x合金薄膜下利用原子力顯微儀(AFM) 確認鐵鈀兩種鍍源的鍍率,依照不同鍍率的選定改變不同參數製備不同比例FexPd100-x合金薄膜。
    我們利用磁光科爾效應(MOKE)量測了各種比例的FexPd100-x合金薄膜磁性,確認了不同比例FexPd100-x合金後在真空中以及在1 bar氫氣壓力下測量磁滯曲線以進行比較。實驗結果觀察到氫化效應不僅改變了矯頑力,此落差最大來到1.3 (Oe),甚至改變了磁異向性,氫化效應前後旋轉了磁易軸約60度,同時還確認了氫原子從FexPd100-x合金膜中的解吸時間,儲存的時間高於20小時。並且利用X射線繞射儀(XRD)確認FexPd100-x合金與藍寶石基板的晶格結構關係。這些結果對於我們弄清楚FexPd100-x合金薄膜中氫原子與磁化強度之間的關係非常重要,並將成為未來的工業上應用提供參考。

    In recent years, the application of palladium-associated hydrogenation was widely studied for applications such as hydrogen sensors, etc. Instead of the previously reported CoxPd100-x, we focused on the magnetic property of FexPd100-x alloy films in this study, due to the much longer H-desorption time.
    The characterization of FexPd100-x alloy thin films with various Fe concentration was conducted by magneto-optical Kerr effect (MOKE). The hysteresis loops were measured either in vacuum or under 1 bar hydrogen gas pressure for comparison. Not only the coercivity but also the magnetic anisotropy was changed by hydrogenation. The maximum change value in coercivity under the hydrogenation came to 1.3 (Oe) and the magnetic easy axis was rotated by 60 degree. The crystal structure relation between FexPd100-x alloy films and substrate are measured by XRD. In addition, the desorption time of hydrogen from the FexPd100-x alloy films was also confirmed to be more than 20 hours.
    These results are important for us to determine the correlation between hydrogen and magnetization in FexPd100-x alloy thin films and will be valuable for future application.

    Abstract I 摘要 II 研究動機 III 基礎概念 1 1.磁性性質 ( Magnetism ) 1 1-1.磁滯曲線 ( hysteresis loop ) 1 1-2.磁性物質 ( magnetic material ) 1 強磁 2 1-3.鐵磁 ( Ferromagnetism ) 2 1-4.亞鐵 ( Ferrimagnetism ) 3 弱磁 3 1-5.順磁 ( Paramagnetism ) 3 1-6.反磁 (Diamagnetism) 4 1-7.反鐵磁 (Antiferromagnetism) 4 2.磁各向異性 ( Magnetic anisotropy ) 5 2-1.磁晶異向性 ( magneto crystalline anisotropy ) 5 2-2.形狀異向性 ( shape anisotropy ) 5 2-3.應力異向性 ( stress anisotropy ) 6 2-4.誘導異向性 ( induced magnetic anisotropy ) 6 3.合金 ( Alloy ) 7 4.氫化效應 ( Hydrogenation ) 8 實驗方法與原理 9 5.磁光科爾效應 ( magneto-optic Kerr effect, MOKE) 9 6.原子力顯微鏡 ( atomic force microscopy, AFM ) 12 7. X射線繞射儀 ( X-ray Diffraction, XRD ) 15 8.實驗數據 17 8-1. AFM鍍率量測 17 8-2. Pd鍍率量測 17 8-3. Fe鍍率量測 19 8-4.鍍率參數 21 8-5. FexPd100-x合金參數 22 9.數據分析 23 9-1. MOKE數據分析 23 9-2. Al2O3(0001)基板方向與鍍膜關係 30 9-3. XRD實驗數據 34 9-4.氫氣效應與時間關係 37 9-5. Fe40Pd60合金薄膜不同厚度與氫化效應 39 9-6.固定基板方向與不同比例FexPd100-x合金 41 結論 43 10-1.FexPd100-x合金薄膜比例與氫化效應關係 43 10-2.FexPd100-x合金薄膜基板方向與氫化效應關係 43 10-3.Fe40Pd60合金薄膜晶格結構與氫化效應關係 44 10-4.Fe40Pd60合金晶格結構與氫化效應前後關係 45 參考資料 47

    [1] P. C. Chang, C. M. Liu, C. C. Hsu, and W. C. Lin, Sci. Rep. 8, 6656 (2018).
    [2] P. C. Chang, T. H. Chuang, D. H. Wei, and W. C. Lin, Appl. Phys. Lett. 116, 102407 (2020)
    [3] P. C. Chang, Y.C. Chen, C.C. Hsu, V. R. Mudinepalli, H.C. Chiu, W.C. Lin, Journal of Alloys and Compounds 710 (2017) 37-46
    [4]莊程豪 國立臺灣大學物理學系碩士論文(2003)
    [5]高瞻自然科學教學資源平台: 國立彰化師範大學物理學系: 陳建淼、洪連輝
    [6] E. Burzo, P. Vlaic, Journal of optoelectronics and advanced materials.12, 9, (2010)
    [7] N.J. J. Johnson1, B. Lam1, B. P. MacLeod1, R. S. Sherbo1, M. Moreno-Gonzalez1, D. K. Fork and C. P. Berlinguette, Nat. Mat. (2019)
    [8]林文欽 國立臺灣大學物理學系碩士論文(2000)
    [9]何宗穎 國立臺灣師範大學物理學系碩士論文(2012)
    [10]林建宇 國立交通大學機械工程學系碩士論文(2010)
    [11]賴琇怡 國立中山大學物理學系碩士論文(2013)
    [12] X-Ray Diffraction (XRD) 斯頌平 中興大學物理系
    [13] ILJIN-南韓 藍寶石基板

    下載圖示
    QR CODE