簡易檢索 / 詳目顯示

研究生: 向柔瑋
Rou-Wei Xiang
論文名稱: 開發FeS2-TiO2複合材料並應用在光催化產氫之研究
Development of new FeS2-TiO2 nanocomposites for photocatalytic hydrogen generation
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 光觸媒水分解產氫二硫化鐵二氧化鈦
英文關鍵詞: photocatalyst, water splitting, hydrogen production, pyrite, titanium dioxide
論文種類: 學術論文
相關次數: 點閱:516下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們利用溶液合成方法製備出親水性的二硫化鐵奈米晶體(FeS2 NCs),再與市售的二氧化鈦 (TiO2,Degussa P25)混合,作為複合材料光觸媒,應用在光催化分解水產生氫氣。
    實驗中,利用溶液合成法製備出親水性的FeS2,摻雜P25 (TiO2),進行高溫硫化鍛燒步驟,使FeS2與TiO2能更緊密的結合。所得到的複合材料光觸媒在加入犧牲試劑後進行光照反應(光源:Mercury arc lamp, 強度:400W),在不同的實驗條件下:光觸媒比例、犧牲試劑、溶液pH值…等,偵測照光後產氫效果,其最佳條件為FeS2-TiO2 (1:1),犧牲試劑為MeOH/H2O (1:1),pH值為7,產氫速率為373 mole h-1 g-1。相較於單純P25,產氫速率提升約20倍。更重要的,FeS2-TiO2具有好的光催化產氫效果,主要是因為FeS2材料吸收較TiO2廣,可吸收波長為可見光的部份,進而增加產氫之效率。
    在此研究中,我們呈現出以地球含量多且非毒性的二硫化鐵(FeS2)結合二氧化鈦(TiO2)作為複合材料光觸媒,經由硫化步驟優化FeS2-TiO2複合材料,且不須藉由任何貴金屬做助催化劑,就能有效達到分解水的產氫效果。

    In this work, we demonstrated a new photocatalyst consisting of FeS2 NCs and TiO2 (Degussa P25) nanomaterials for water splitting reaction. For fabricating the photocatalyst of FeS2-TiO2 nanocomposites, first, FeS2 NCs was successfully prepared by solution process and then mixed with TiO2 under sonication reaction. To enhance interface connection between FeS2 and TiO2, a sulfurization process is obtained. For testing hydrogen generation reaction, a 400W mercury arc lamp was used as a light source to trigger the photocatalytic reaction. We found that the catalysts of FeS2-TiO2 (1:1) in the MeOH/H2O (1:1) solution at pH 7, has highest hydrogen production rate of 373 mole h-1 g-1, which is 20 folds of pristine P25 photocatalyst.
    In this study, we demonstrated that a FeS2-TiO2 nanocomposites catalysts, which is abundant on earth, environment friendly, and economy, achieved an effectively hydrogen production for water splitting because of extending absorbing visible light in comparison with pure TiO2.

    摘要 I Abstract II 謝誌 III 目錄 V 圖表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 光觸媒 4 1.2.1 光觸媒的催化原理 4 1.2.2 半導體光觸媒分解水的原理 7 1.3 研究動機與目的 12 第二章 文獻回顧 13 2.1 二氧化鈦(TiO2)[23] 13 2.2 二硫化鐵(FeS2,Pyrite) 18 2.3 半導體光觸媒的發展與改善 21 2.3.1 降低光生電子、電洞再結合(Recombination)機率 21 2.3.2 增加吸收光範圍 23 2.3.3 降低光腐蝕(photocorrosion)反應 26 第三章 實驗方法與設備 27 3.1 實驗藥品 27 3.2 實驗儀器與原理 28 3.2.1 X光繞射儀(X-ray Diffraction,XRD) 28 3.2.2 紫外-可見光吸收光光譜儀(UV-Vis Absorption Spectrometer) 29 3.2.3 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 30 3.2.4 超音波震盪器(Ultrasonic cleaner) 31 3.2.5 高溫爐管(Oven) 32 3.2.6 燈源 32 3.2.7 氣相層析光譜儀(Gas Chromatography,GC) 33 3.3 實驗方法 35 3.3.1 FeS2奈米粒子合成 35 3.3.2 FeS2-TiO2高溫硫化鍛燒步驟 36 3.3.3 配置樣品進行光催化產氫反應 37 第四章 結果與討論 38 4.1材料鑑定與分析 38 4.1.1 FeS2 NCs 38 4.1.2 FeS2-TiO2複合材料 39 4.2 FeS2-TiO2複合材料之光催化產氫活性 43 4.2.1 FeS2與TiO2不同混合比例 44 4.2.2 加入不同犧牲試劑 45 4.2.3 反應溶液之pH值 46 4.2.4 FeS2-TiO2複合材料光觸媒之光催化反應穩定性 50 4.3 探討FeS2在複合光觸媒中所扮演的角色 51 4.3.1 利用Xe燈(全波段)光源進行光催化反應 51 4.3.2 利用Xe燈(>410nm)光源進行光催化反應 55 第五章 結論 57 第六章 未來展望 58 參考文獻 59

    (1) Kosmulski, M. Journal of colloid and interface science 2002, 253, 77.
    (2) Tsuji, I.; Kato, H.; Kudo, A. Angew Chem Int Ed Engl 2005, 44, 3565.
    (3) F. Brown, L. International Journal of Hydrogen Energy 2001, 26, 381.
    (4) Das, D.; Veziroǧlu, T. N. International Journal of Hydrogen Energy 2001, 26, 13.
    (5) Kogan, A. International Journal of Hydrogen Energy 2000, 25, 1043.
    (6) Steinfeld, A. International Journal of Hydrogen Energy 2002, 27, 611.
    (7) Kreuter, W.; Hofmann, H. International Journal of Hydrogen Energy 1998, 23, 661.
    (8) Nowotny, J.; Bak, T.; Nowotny, M. K.; Sheppard, L. R. International Journal of Hydrogen Energy 2007, 32, 2609.
    (9) Fujishima, A.; Rao, T. N.; Tryk, D. A. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1, 1.
    (10) Kudo, A. Catalysis Surveys from Asia 2003, 7, 31.
    (11) Kudo, A.; Miseki, Y. Chem Soc Rev 2009, 38, 253.
    (12) Abe, R. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2010, 11, 179.
    (13) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
    (14) Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X.; Zhang, K.; Ma, L.; Guo, P. International Journal of Hydrogen Energy 2010, 35, 7087.
    (15) Kawai, T.; Sakata, T. Journal of the Chemical Society, Chemical Communications 1980, 694.
    (16) Mills, A.; Davies, R. H.; Worsley, D. Chemical Society Reviews 1993, 22, 417.
    (17) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chemical Reviews 1995, 95, 735.
    (18) Jitputti, J.; Suzuki, Y.; Yoshikawa, S. Catalysis Communications 2008, 9, 1265.
    (19) Shimidzu, T.; Iyoda, T.; Koide, Y. Journal of the American Chemical Society 1985, 107, 35.
    (20) Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. Journal of the American Chemical Society 2005, 127, 8286.
    (21) Ma, Z.; Guo, Q.; Mao, X.; Ren, Z.; Wang, X.; Xu, C.; Yang, W.; Dai, D.; Zhou, C.; Fan, H.; Yang, X. The Journal of Physical Chemistry C 2013, 117, 10336.
    (22) Reber, J. F.; Meier, K. The Journal of Physical Chemistry 1984, 88, 5903.
    (23) Diebold, U. Surface Science Reports 2003, 48, 53.
    (24) Frank, S. N.; Bard, A. J. The Journal of Physical Chemistry 1977, 81, 1484.
    (25) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. The Journal of Physical Chemistry B 2003, 107, 4545.
    (26) Alharbi, F.; Bass, J. D.; Salhi, A.; Alyamani, A.; Kim, H.-C.; Miller, R. D. Renewable Energy 2011, 36, 2753.
    (27) Ennaoui, A.; Fiechter, S.; Jaegermann, W.; Tributsch, H. journal of the electrochemical society 1986, 133, 97.
    (28) Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A. Solid State Communications 1996, 98, 581.
    (29) Gao, P.; Xie, Y.; Ye, L.; Chen, Y.; Guo, Q. Crystal Growth & Design 2006, 6, 583.
    (30) Lehner, S. W.; Savage, K. S.; Ayers, J. C. Journal of Crystal Growth 2006, 286, 306.
    (31) Yu, J.; Qi, L.; Jaroniec, M. The Journal of Physical Chemistry C 2010, 114, 13118.
    (32) Zhang, J.; Li, L.; Li, G. International Journal of Photoenergy 2012, 2012, 1.
    (33) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.
    (34) Dong, F.; Zhao, W.; Wu, Z.; Guo, S. Journal of hazardous materials 2009, 162, 763.
    (35) Muruganandham, M.; Kusumoto, Y. The Journal of Physical Chemistry C 2009, 113, 16144.
    (36) Cheng, X.; Yu, X.; Xing, Z. Applied Surface Science 2012, 258, 3244.
    (37) Sajjad, A. K. L.; Shamaila, S.; Zhang, J. Materials Research Bulletin 2012, 47, 3083.
    (38) Villa, K.; Black, A.; Domènech, X.; Peral, J. Solar Energy 2012, 86, 558.
    (39) Srinivasan, S. S.; Wade, J.; Stefanakos, E. K. Journal of Nanomaterials 2006, 2006, 1.
    (40) Park, H.; Choi, W.; Hoffmann, M. R. Journal of Materials Chemistry 2008, 18, 2379.
    (41) Daskalaki, V. M.; Antoniadou, M.; Li Puma, G.; Kondarides, D. I.; Lianos, P. Environmental Science & Technology 2010, 44, 7200.
    (42) Peng, T.; Li, K.; Zeng, P.; Zhang, Q.; Zhang, X. The Journal of Physical Chemistry C 2012, 116, 22720.
    (43) Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Nano letters 2011, 11, 4774.
    (44) Shen, S.; Wang, Q. Chemistry of Materials 2013, 25, 1166.
    (45) Zong, X.; Han, J.; Ma, G.; Yan, H.; Wu, G.; Li, C. The Journal of Physical Chemistry C 2011, 115, 12202.
    (46) Huang, Q.; Tian, S.; Zeng, D.; Wang, X.; Song, W.; Li, Y.; Xiao, W.; Xie, C. ACS Catalysis 2013, 1477.
    (47) Meissner, D.; Benndorf, C.; Memming, R. Applied Surface Science 1987, 27, 423.
    (48) Yang, X.; Salzmann, C.; Shi, H.; Wang, H.; Green, M. L. H.; Xiao, T. The Journal of Physical Chemistry A 2008, 112, 10784.
    (49) Guzman, F.; Chuang, S. S. C.; Yang, C. Industrial & Engineering Chemistry Research 2012, 120713080514006.
    (50) Sreethawong, T.; Puangpetch, T.; Chavadej, S.; Yoshikawa, S. Journal of Power Sources 2007, 165, 861.
    (51) Kosmulski, M. Journal of colloid and interface science 2009, 337, 439.

    下載圖示
    QR CODE